Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
NMR Biomed ; : e5181, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38830747

RESUMEN

PURPOSE: The aim of this work is to develop an ω-3 fatty acid fraction mapping method at 3 T based on a chemical shift encoding model, to assess its performance in a phantom and in vitro study, and to further demonstrate its feasibility in vivo. METHODS: A signal model was heuristically derived based on spectral appearance and theoretical considerations of the corresponding molecular structures to differentiate between ω-3 and non-ω-3 fatty acid substituents in triacylglycerols in addition to the number of double bonds (ndb), the number of methylene-interrupted double bonds (nmidb), and the mean fatty acid chain length (CL). First, the signal model was validated using single-voxel spectroscopy and a time-interleaved multi-echo gradient-echo (TIMGRE) sequence in gas chromatography-mass spectrometry (GC-MS)-calibrated oil phantoms. Second, the TIMGRE-based method was validated in vitro in 21 adipose tissue samples with corresponding GC-MS measurements. Third, an in vivo feasibility study was performed for the TIMGRE-based method in the gluteal region of two healthy volunteers. Phantom and in vitro data was analyzed using a Bland-Altman analysis. RESULTS: Compared with GC-MS, MRS showed in the phantom study significant correlations in estimating the ω-3 fraction (p < 0.001), ndb (p < 0.001), nmidb (p < 0.001), and CL (p = 0.001); MRI showed in the phantom study significant correlations (all p < 0.001) for the ω-3 fraction, ndb, and nmidb, but no correlation for CL. Also in the in vitro study, significant correlations (all p < 0.001) between MRI and GC-MS were observed for the ω-3 fraction, ndb, and nmidb, but not for CL. An exemplary ROI measurement in vivo in the gluteal subcutaneous adipose tissue yielded (mean ± standard deviation) 0.8% ± 1.9% ω-3 fraction. CONCLUSION: The present study demonstrated strong correlations between gradient-echo imaging-based ω-3 fatty acid fraction mapping and GC-MS in the phantom and in vitro study. Furthermore, feasibility was demonstrated for characterizing adipose tissue in vivo.

2.
J Cachexia Sarcopenia Muscle ; 14(3): 1381-1394, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37021483

RESUMEN

BACKGROUND: Cancer cachexia (CCx) is a complex and multi-organ wasting syndrome characterized by substantial weight loss and poor prognosis. An improved understanding of the mechanisms involved in the onset and progression of cancer cachexia is essential. How microRNAs contribute to the clinical manifestation and progression of CCx remains elusive. The aim of this study was to identify specific miRNAs related to organ-specific CCx and explore their functional role in humans. METHODS: miRNA patterns in serum and in cachexia target organs (liver, muscle and adipose tissue) from weight stable (N ≤ 12) and cachectic patients (N ≤ 23) with gastrointestinal cancer were analysed. As a first step, a miRNA array (158 miRNAs) was performed in pooled serum samples. Identified miRNAs were validated in serum and corresponding tissue samples. Using in silico prediction, related genes were identified and evaluated. The findings were confirmed in vitro by siRNA knock-down experiments in human visceral preadipocytes and C2C12 myoblast cells and consecutive gene expression analyses. RESULTS: Validating the results of the array, a 2-fold down-regulation of miR-122-5p (P = 0.0396) and a 4.5-fold down-regulation of miR-194-5p (P < 0.0001) in serum of CCx patients in comparison with healthy controls were detected. Only miR-122-5p correlated with weight loss and CCx status (P = 0.0367). Analysing corresponding tissues six muscle and eight visceral adipose tissue (VAT) cachexia-associated miRNAs were identified. miR-27b-3p, miR-375 and miR-424-5p were the most consistently affected miRNAs in tissues of CCx patients correlating negatively with the severity of body weight loss (P = 0.0386, P = 0.0112 and P = 0.0075, respectively). We identified numerous putative target genes of the miRNAs in association with muscle atrophy and lipolysis pathways. Knock-down experiments in C2C12 myoblast cells revealed an association of miR-27b-3p and the in silico predicted atrophy-related target genes IL-15 and TRIM63. Both were up-regulated in miR-27b-3p knock-down cells (P < 0.05). Concordantly, in muscle tissue of CCx individuals, significant higher expression levels of IL-15 (P = 0.0237) and TRIM63 (P = 0.0442) were detected. miR-424-5p was identified to regulate the expression of lipase genes. Knock-down experiments in human visceral preadipocytes revealed an inverse association of miR-424-5p with its predicted target genes LIPE, PNPLA2, MGLL and LPL (P < 0.01). CONCLUSIONS: The identified miRNAs, in particular miR-122-5p, miR-27b-3p, miR-375 and miR-424-5p, represent features of human CCx and may contribute to tissue wasting and skeletal muscle atrophy through the regulation of catabolic signals. Further studies are needed to explore the potential of the identified miRNAs as a screening tool for early detection of cancer cachexia.


Asunto(s)
MicroARNs , Neoplasias , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Interleucina-15 , Caquexia/genética , Neoplasias/complicaciones , Neoplasias/genética , Pérdida de Peso
3.
Mol Metab ; 73: 101729, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37094629

RESUMEN

OBJECTIVES: Cancer is considered an emerging diabetes complication, with higher incidence and worse prognosis in patients with diabetes. Cancer is frequently associated with cachexia, a systemic metabolic disease causing wasting. It is currently unclear how diabetes affects the development and progression of cachexia. METHODS: We investigated the interplay between diabetes and cancer cachexia retrospectively in a cohort of 345 patients with colorectal and pancreatic cancer. We recorded body weight, fat mass, muscle mass, clinical serum values, and survival of these patients. Patients were grouped either into diabetic/non-diabetic groups based on previous diagnosis, or into obese/non-obese groups based on body mass index (BMI ≥30 kg/m2 was considered obese). RESULTS: The pre-existence of type 2 diabetes, but not obesity, in patients with cancer led to increased cachexia incidence (80%, compared to 61% without diabetes, p ≤ 0.05), higher weight loss (8.9% vs. 6.0%, p ≤ 0.001), and reduced survival probability (median survival days: 689 vs. 538, Chi square = 4.96, p ≤ 0.05) irrespective of the initial body weight or tumor progression. Patients with diabetes and cancer showed higher serum levels of C-reactive protein (0.919 µg/mL vs. 0.551 µg/mL, p ≤ 0.01) and interleukin 6 (5.98 pg/mL vs. 3.75 pg/mL, p ≤ 0.05) as well as lower serum albumin levels (3.98 g/dL vs. 4.18 g/dL, p ≤ 0.05) than patients with cancer without diabetes. In a sub-analysis of patients with pancreatic cancer, pre-existing diabetes worsened weight loss (9.95% vs. 6.93%, p ≤ 0.01), and increased the duration of hospitalization (24.41 days vs. 15.85 days, p ≤ 0.001). Further, diabetes aggravated clinical manifestations of cachexia, as changes in the aforementioned biomarkers were more pronounced in patients with diabetes and cachexia co-existence, compared to cachectic patients without diabetes (C-reactive protein: 2.300 µg/mL vs. 0.571 µg/mL, p ≤ 0.0001; hemoglobin: 11.24 g/dL vs. 12.52 g/dL, p ≤ 0.05). CONCLUSIONS: We show for the first time that pre-existing diabetes aggravates cachexia development in patients with colorectal and pancreatic cancer. This is important when considering cachexia biomarkers and weight management in patients with co-existing diabetes and cancer.


Asunto(s)
Neoplasias Colorrectales , Diabetes Mellitus Tipo 2 , Neoplasias Pancreáticas , Humanos , Caquexia/metabolismo , Estudios Retrospectivos , Proteína C-Reactiva , Diabetes Mellitus Tipo 2/complicaciones , Neoplasias Pancreáticas/complicaciones , Neoplasias Pancreáticas/metabolismo , Peso Corporal , Obesidad/complicaciones , Biomarcadores , Neoplasias Colorrectales/complicaciones , Neoplasias Pancreáticas
4.
Photoacoustics ; 29: 100454, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36794122

RESUMEN

Hepatic steatosis is characterized by intrahepatic lipid accumulation and may lead to irreversible liver damage if untreated. Here, we investigate whether multispectral optoacoustic tomography (MSOT) can offer label-free detection of liver lipid content to enable non-invasive characterization of hepatic steatosis by analyzing the spectral region around 930 nm, where lipids characteristically absorb. In a pilot study, we apply MSOT to measure liver and surrounding tissues in five patients with liver steatosis and five healthy volunteers, revealing significantly higher absorptions at 930 nm in the patients, while no significant difference was observed in the subcutaneous adipose tissue of the two groups. We further corroborated the human observations with corresponding MSOT measurements in high fat diet (HFD) - and regular chow diet (CD)-fed mice. This study introduces MSOT as a potential non-invasive and portable technique for detecting/monitoring hepatic steatosis in clinical settings, providing justification for larger studies.

5.
J Cell Biol ; 222(2)2023 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-36629908

RESUMEN

The emerging cytokine tissue inhibitor of metalloproteinases-1 (TIMP-1) correlates with the progression of inflammatory diseases, including cancer. However, the effects of TIMP-1 on immune cell activation and underlying molecular mechanisms are largely unknown. Unbiased ligand-receptor-capture-screening revealed TIMP-1-interaction with Amyloid Precursor Protein (APP) family members, namely APP and Amyloid Precursor-like Protein-2 (APLP2), which was confirmed by pull-down assays and confocal microscopy. We found that TIMP-1 triggered glucose uptake and proinflammatory cytokine expression in human monocytes. In cancer patients, TIMP-1 expression positively correlated with proinflammatory cytokine expression and processes associated with monocyte activation. In pancreatic cancer, TIMP-1 plasma levels correlated with the monocyte activation marker sCD163, and the combined use of both clinically accessible plasma proteins served as a powerful prognostic indicator. Mechanistically, TIMP-1 triggered monocyte activation by its C-terminal domain and via APP as demonstrated by in vitro interference, in silico docking, and the employment of recombinant TIMP-1 variants. Identification of TIMP-1 as a trigger of monocyte activation opens new therapeutic perspectives for inflammatory diseases.


Asunto(s)
Precursor de Proteína beta-Amiloide , Monocitos , Inhibidor Tisular de Metaloproteinasa-1 , Humanos , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Ligandos , Monocitos/metabolismo , Fenotipo , Inhibidor Tisular de Metaloproteinasa-1/genética , Inhibidor Tisular de Metaloproteinasa-1/metabolismo , Inflamación , Neoplasias Pancreáticas , Animales
6.
Cancers (Basel) ; 13(17)2021 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-34503243

RESUMEN

PURPOSE: To evaluate the suitability of psoas and erector spinae muscle proton density fat fraction (PDFF) and fat volume as biomarkers for monitoring cachexia severity in an oncological cohort, and to evaluate regional variances in muscle parameters over time. METHODS: In this prospective study, 58 oncological patients were examined by a 3 T MRI receiving between one and five scans. Muscle volume and PDFF were measured, segmentation masks were divided into proximal, middle and distal muscle section. RESULTS: A regional variation of fat distribution in erector spinae muscle at baseline was found (p < 0.01). During follow-ups significant relative change of muscle parameters was observed. Relative maximum change of erector spinae muscle showed a significant regional variation. Correlation testing with age as a covariate revealed significant correlations for baseline psoas fat volume (r = -0.55, p < 0.01) and baseline psoas PDFF (r = -0.52, p = 0.02) with maximum BMI change during the course of the disease. CONCLUSION: In erector spinae muscles, a regional variation of fat distribution at baseline and relative maximum change of muscle parameters was observed. Our results indicate that psoas muscle PDFF and fat volume could serve as MRI-determined biomarkers for early risk stratification and disease monitoring regarding progression and severity of weight loss in cancer cachexia.

7.
J Exp Med ; 218(11)2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34533565

RESUMEN

Sex disparity in cancer is so far inadequately considered, and components of its basis are rather unknown. We reveal that male versus female pancreatic cancer (PC) patients and mice show shortened survival, more frequent liver metastasis, and elevated hepatic metastasis-promoting gene expression. Tissue inhibitor of metalloproteinases 1 (TIMP1) was the secreted factor with the strongest male-biased expression in patient-derived pancreatic tumors. Male-specific up-regulation of systemic TIMP1 was demonstrated in PC mouse models and patients. Using TIMP1-competent and TIMP1-deficient PC mouse models, we established a causal role of TIMP1 in determining shortened survival and increased liver metastasis in males. Observing TIMP1 expression as a risk parameter in males led to identification of a subpopulation exhibiting increased TIMP1 levels (T1HI males) in both primary tumors and blood. T1HI males showed increased risk for liver metastasis development not only in PC but also in colorectal cancer and melanoma. This study reveals a lifestyle-independent sex disparity in liver metastasis and may open new avenues toward precision medicine.


Asunto(s)
Neoplasias Hepáticas/genética , Neoplasias Pancreáticas/genética , Inhibidor Tisular de Metaloproteinasa-1/genética , Animales , Línea Celular Tumoral , Modelos Animales de Enfermedad , Femenino , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Neoplasias Pancreáticas
8.
J Cachexia Sarcopenia Muscle ; 12(5): 1333-1351, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34427055

RESUMEN

BACKGROUND: Cancer cachexia (CCx) is a multifactorial wasting disorder characterized by involuntary loss of body weight that affects many cancer patients and implies a poor prognosis, reducing both tolerance to and efficiency of anticancer therapies. Actual challenges in management of CCx remain in the identification of tumour-derived and host-derived mediators involved in systemic inflammation and tissue wasting and in the discovery of biomarkers that would allow for an earlier and personalized care of cancer patients. The aim of this study was to identify new markers of CCx across different species and tumour entities. METHODS: Quantitative secretome analysis was performed to identify specific factors characteristic of cachexia-inducing cancer cell lines. To establish the subsequently identified phospholipase PLA2G7 as a marker of CCx, plasma PLA2G7 activity and/or protein levels were measured in well-established mouse models of CCx and in different cohorts of weight-stable and weight-losing cancer patients with different tumour entities. Genetic PLA2G7 knock-down in tumours and pharmacological treatment using the well-studied PLA2G7 inhibitor darapladib were performed to assess its implication in the pathogenesis of CCx in C26 tumour-bearing mice. RESULTS: High expression and secretion of PLA2G7 were hallmarks of cachexia-inducing cancer cell lines. Circulating PLA2G7 activity was increased in different mouse models of CCx with various tumour entities and was associated with the severity of body wasting. Circulating PLA2G7 levels gradually rose during cachexia development. Genetic PLA2G7 knock-down in C26 tumours only partially reduced plasma PLA2G7 levels, suggesting that the host is also an important contributor. Chronic treatment with darapladib was not sufficient to counteract inflammation and tissue wasting despite a strong inhibition of the circulating PLA2G7 activity. Importantly, PLA2G7 levels were also increased in colorectal and pancreatic cancer patients with CCx. CONCLUSIONS: Overall, our data show that despite no immediate pathogenic role, at least when targeted as a single entity, PLA2G7 is a consistent marker of CCx in both mice and humans. The early increase in circulating PLA2G7 levels in pre-cachectic mice supports future prospective studies to assess its potential as biomarker for cancer patients.


Asunto(s)
Caquexia , Neoplasias Pancreáticas , 1-Alquil-2-acetilglicerofosfocolina Esterasa , Animales , Benzaldehídos , Biomarcadores , Caquexia/tratamiento farmacológico , Caquexia/etiología , Humanos , Ratones , Oximas , Estudios Prospectivos
9.
Cancer Res ; 81(13): 3568-3579, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-33941611

RESUMEN

Tumor-derived protein tissue inhibitor of metalloproteinases-1 (TIMP1) correlates with poor prognosis in many cancers, including highly lethal pancreatic ductal adenocarcinoma (PDAC). The noncanonical signaling activity of TIMP1 is emerging as one basis for its contribution to cancer progression. However, TIMP1-triggered progression-related biological processes are largely unknown. Formation of neutrophil extracellular traps (NET) in the tumor microenvironment is known to drive progression of PDAC, but factors or molecular mechanisms initiating NET formation in PDAC remain elusive. In this study, gene-set enrichment analysis of a human PDAC proteome dataset revealed that TIMP1 protein expression most prominently correlates with neutrophil activation in patient-derived tumor tissues. TIMP1 directly triggered formation of NETs in primary human neutrophils, which was dependent on the interaction of TIMP1 with its receptor CD63 and subsequent ERK signaling. In genetically engineered PDAC-bearing mice, TIMP1 significantly contributed to NET formation in tumors, and abrogation of TIMP1 or NETs prolonged survival. In patient-derived PDAC tumors, NETs predominantly colocalized with areas of elevated TIMP1 expression. Furthermore, TIMP1 plasma levels correlated with DNA-bound myeloperoxidase, a NET marker, in the blood of patients with PDAC. A combination of plasma levels of TIMP1 and NETs with the clinically established marker CA19-9 allowed improved identification of prognostically distinct PDAC patient subgroups. These observations may have a broader impact, because elevated systemic levels of TIMP1 are associated with the progression of a wide range of neutrophil-involved inflammatory diseases. SIGNIFICANCE: These findings highlight the prognostic relevance of TIMP1 and neutrophil extracellular traps in highly lethal pancreatic cancer, where a noncanonical TIMP1/CD63/ERK signaling axis induces NET formation. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/81/13/3568/F1.large.jpg.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Carcinoma Ductal Pancreático/patología , Trampas Extracelulares/fisiología , Regulación Neoplásica de la Expresión Génica , Neoplasias Pancreáticas/patología , Inhibidor Tisular de Metaloproteinasa-1/metabolismo , Inhibidor Tisular de Metaloproteinasa-1/fisiología , Animales , Apoptosis , Biomarcadores de Tumor/genética , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Proliferación Celular , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Pronóstico , Tasa de Supervivencia , Inhibidor Tisular de Metaloproteinasa-1/genética , Células Tumorales Cultivadas , Microambiente Tumoral
10.
J Cachexia Sarcopenia Muscle ; 12(2): 378-392, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33590974

RESUMEN

BACKGROUND: Cachexia, a devastating syndrome in cancer patients, critically determines survival and life quality. It is characterized by impaired homeostasis of multiple organs including the liver, involves tissue wasting, and is conventionally diagnosed and classified by weight loss (WL). However, recent studies pointed at the problem that WL is not sufficient for precise classification of cancer patients according to disease severity (i.e. prognosis). Tissue inhibitor of metalloproteinases-1 (TIMP-1) is an easily accessible cachexia-associated biomarker in the blood, known to alter liver homeostasis. Here, we investigated the value of combining blood levels of TIMP-1 with parameters of liver functionality towards establishment of a cachexia-associated clinical score, which predicts survival of cancer patients, reflects the clinical manifestation of cachexia, and is easily accessible in the clinic. METHODS: The TIMP-1/liver cachexia (TLC) score, expressed as numerical value ranging from 0 to 1, was calculated by categorizing the blood levels of TIMP-1 and parameters of liver functionality (C-reactive protein, ferritin, gamma-glutamyl transferase, albumin, and total protein) for each patient as below/above a certain risk threshold. The TLC score was tested in a cohort of colorectal cancer (CRC) patients (n = 82, 35.4% women, 64.6% men, median age: 70 years) and validated in a cohort of pancreatic cancer (PC) patients (n = 84, 54.8% women, 45.2% men, median age: 69 years). RESULTS: In CRC patients, the TLC score positively correlated with presence of cachexia-related symptoms (WL, impaired liver function), predicted survival [P < 0.001, hazard ratio (HR): 96.91 (9.85-953.90)], and allowed classification of three prognostically distinct patient subpopulations [low (LO)-risk, intermediate (IM)-risk, and high (HI)-risk groups; LO vs. IM: P = 0.003, LO vs. HI: P < 0.001, IM vs. HI: P = 0.029]. The prognostic power of the cachexia-associated TLC score [P < 0.001, HR: 7.37 (2.80-19.49)] and its application to define risk groups (LO vs. IM: P = 0.032, LO vs. HI: P < 0.001, IM vs. HI: P = 0.014) was confirmed in a cohort of PC patients. The prognostic power of the TLC score was independent of presence of liver metastases in CRC or PC patients and was superior to clinically established staging classifications. CONCLUSIONS: The TLC score, a result of straightforward determination of blood parameters, is an objective cachexia-associated clinical tool for precise survival prediction of gastrointestinal cancer patients.


Asunto(s)
Caquexia , Neoplasias Gastrointestinales , Inhibidor Tisular de Metaloproteinasa-1/metabolismo , Anciano , Caquexia/diagnóstico , Caquexia/etiología , Femenino , Neoplasias Gastrointestinales/complicaciones , Humanos , Hígado , Masculino , Neoplasias Pancreáticas , Pronóstico
11.
Medicine (Baltimore) ; 99(50): e23642, 2020 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-33327343

RESUMEN

Malnutrition and cachexia affects the majority of cancer patients and significantly worsens their quality of life and prognosis. However, the diagnostic criteria of malnutrition and cachexia remain a topic under constant debate. To overcome this hurdle, diagnostic tools to objectively detect and quantify the loss of muscle and fat mass are needed. Computed tomography (CT)-based measurement is currently considered the golden standard. Bioelectrical impedance analysis (BIA) is an economical, non-invasive tool but it is seen controversial in patients with cancer and malnutrition because of possible estimation errors.BIA and CT-based analysis of body mass compartments were performed 172 times in 118 cancer patients, within the nutrition program of our institution. Prevalence of malnutrition was determined according to the global leadership initiative on malnutrition criteria. Data obtained for muscle and fat mass from both BIA and CT were correlated using Pearson's ρ. All analyses were performed with an explorative significance level of 5%.45.7% of the cohort were classified as "malnourished." No significant differences were observed between the 2 groups regarding demographic data. Median body mass index, Karnofsky performance status, and nutritional risk score were lower in the malnourished group. Values for muscle and fat mass by BIA and CT were significantly lower in malnourished patients. Correlation of the measured parameters were highly significant between CT-based and BIA measurement. In the overall cohort, correlation of measured muscle mass values by CT and BIA was significant with Pearson's ρ = 0.794 (P < .01). Looking at patients without malnutrition only, Pearson's ρ was 0.754 (P < .01). The correlation of measured fat mass values was equally significant, with Pearson's ρ of 0.748 (P < .01) in the overall cohort and 0.771 (P < .01) in patients with malnutrition.To our knowledge, this is the first study comparing BIA to CT-based body mass analysis in a large cohort of cancer patients with malnutrition. The results suggest that BIA is a valid diagnostic tool for the assessment of muscle and fat mass, even in patients with malnutrition, and could be implemented for the early detection and short-term follow-up of malnutrition and cachexia.


Asunto(s)
Índice de Masa Corporal , Caquexia/diagnóstico , Impedancia Eléctrica , Desnutrición/diagnóstico , Neoplasias/complicaciones , Tomografía Computarizada por Rayos X/normas , Adulto , Factores de Edad , Anciano , Composición Corporal/fisiología , Caquexia/etiología , Caquexia/patología , Estudios Transversales , Femenino , Humanos , Masculino , Desnutrición/etiología , Desnutrición/patología , Persona de Mediana Edad , Estado Nutricional , Índice de Severidad de la Enfermedad , Factores Sexuales
12.
J Cachexia Sarcopenia Muscle ; 11(1): 226-240, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31965747

RESUMEN

BACKGROUND: Cachexia is the direct cause of at least 20% of cancer-associated deaths. Muscle wasting in skeletal muscle results in weakness, immobility, and death secondary to impaired respiratory muscle function. Muscle proteins are massively degraded in cachexia; nevertheless, the molecular mechanisms related to this process are poorly understood. Previous studies have reported conflicting results regarding the amino acid abundances in cachectic skeletal muscle tissues. There is a clear need to identify the molecular processes of muscle metabolism in the context of cachexia, especially how different types of molecules are involved in the muscle wasting process. METHODS: New in situ -omics techniques were used to produce a more comprehensive picture of amino acid metabolism in cachectic muscles by determining the quantities of amino acids, proteins, and cellular metabolites. Using matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging, we determined the in situ concentrations of amino acids and proteins, as well as energy and other cellular metabolites, in skeletal muscle tissues from genetic mouse cancer models (n = 21) and from patients with cancer (n = 6). Combined results from three individual MALDI mass spectrometry imaging methods were obtained and interpreted. Immunohistochemistry staining for mitochondrial proteins and myosin heavy chain expression, digital image analysis, and transmission electron microscopy complemented the MALDI mass spectrometry imaging results. RESULTS: Metabolic derangements in cachectic mouse muscle tissues were detected, with significantly increased quantities of lysine, arginine, proline, and tyrosine (P = 0.0037, P = 0.0048, P = 0.0430, and P = 0.0357, respectively) and significantly reduced quantities of glutamate and aspartate (P = 0.0008 and P = 0.0124). Human skeletal muscle tissues revealed similar tendencies. A majority of altered amino acids were released by the breakdown of proteins involved in oxidative phosphorylation. Decreased energy charge was observed in cachectic muscle tissues (P = 0.0101), which was related to the breakdown of specific proteins. Additionally, expression of the cationic amino acid transporter CAT1 was significantly decreased in the mitochondria of cachectic mouse muscles (P = 0.0133); this decrease may play an important role in the alterations of cationic amino acid metabolism and decreased quantity of glutamate observed in cachexia. CONCLUSIONS: Our results suggest that mitochondrial dysfunction has a substantial influence on amino acid metabolism in cachectic skeletal muscles, which appears to be triggered by diminished CAT1 expression, as well as the degradation of mitochondrial proteins. These findings provide new insights into the pathobiochemistry of muscle wasting.


Asunto(s)
Aminoácidos/metabolismo , Caquexia/fisiopatología , Proteínas Mitocondriales/metabolismo , Músculo Esquelético/fisiopatología , Femenino , Humanos , Lactante , Masculino
13.
J Surg Case Rep ; 2019(5): rjz160, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-31139341

RESUMEN

Since the therapeutic use of cannabis and its derivatives is currently rising, the adverse effects of cannabis and cannabinoids are of special interest. However little is known about the possible effects of long-term use of cannabis on the gastrointestinal motility. Herewith we describe the case of a patient with a rare severe form of intestinal intussusception following long-term cannabis consumption. The case shall raise awareness of possible life threatening complications of the use of cannabis and its derivates.

14.
Toxicol In Vitro ; 57: 76-80, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30763608

RESUMEN

In previous experiments, human and rat small bowel samples have been successfully used to study the spasmolytic effect of (potential) therapeutics in carbamate-constricted bowel specimens. Additionally, transferability from rat to human data was shown in the previous study. In the present study, the effects of atropine, scopolamine, MB327, HI-6 as well as obidoxime were examined in organophosphorus-poisoned human small bowel specimens. All substances were tested with at least seven concentrations in samples previously exposed to the nerve agent sarin. Furthermore, the cholinesterase reactivation potential of all substances was investigated. The test substances displayed a spasmolytic effect allowing the calculation of dose-response curves and EC50s. The parasympatholytic compound scopolamine had the strongest relaxing effect (EC50 = 0.05 µM) followed by atropine (EC50 = 0.07 µM). HI-6 and obidoxime were capable to reactivate the sarin-inhibited cholinesterase activity in small bowel samples. Both substances restored AChE activity in a dose-dependent way, with HI-6 being more potent (HI-6 EC50 = 3.8 µM vs obidoxime EC50 = 197.8 µM). Summarizing, our isolated human small bowel setup is a suitable tool to investigate the smooth muscle relaxing effect of (candidate) therapeutics for organophosphorus compound poisoning i.e. sarin exposure in a complex 3D tissue model.


Asunto(s)
Inhibidores de la Colinesterasa/toxicidad , Reactivadores de la Colinesterasa/farmacología , Intestino Delgado/efectos de los fármacos , Intoxicación por Organofosfatos , Sarín/toxicidad , Adulto , Anciano , Anciano de 80 o más Años , Colinesterasas/metabolismo , Femenino , Humanos , Intestino Delgado/fisiología , Masculino , Persona de Mediana Edad , Relajación Muscular/efectos de los fármacos , Músculo Liso/efectos de los fármacos , Músculo Liso/fisiología , Adulto Joven
15.
BMC Cancer ; 18(1): 128, 2018 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-29394913

RESUMEN

BACKGROUND: Tissue inhibitor of metalloproteinases-1 (TIMP-1) is a candidate diagnostic and prognostic biomarker for pancreatic ductal adenocarcinoma (PDAC). Here, we determined the possible association of systemic TIMP-1 levels with cachexia and jaundice, two common PDAC-associated conditions. METHODS: Plasma TIMP-1 was measured by ELISA in patients diagnosed with PDAC (n = 36) and chronic pancreatitis (CP) (n = 25). Patients without pancreatic pathologies and known malignancies of other origin served as controls (n = 13). TIMP-1 levels in these patients were tested for asscociation with jaundice and chachexia, and furthermore correlated with cachexia-related clinical parameters such as weight loss and ferritin, parameters of lung function, hemoglobin and liver synthesis parameters. RESULTS: TIMP-1 plasma levels were mostly higher in CP and PDAC patients with concomitant jaundice or cachexia. Elevated plasma TIMP-1 levels were also associated with clinical cachexia markers, including absolute and relative values of weight loss and lung function, as well as ferritin, hemoglobin, and cholinesterase levels. TIMP-1 levels significantly correlated with cachexia only in patients without jaundice. Jaundice also impaired the use of TIMP-1 as a prognostic marker in cancer patients. Relating to cachexia status alone, a slightly improved association of TIMP-1 levels with survival of PDAC patients was observed. CONCLUSION: This retrospective study reports for the first time that plasma levels of TIMP-1 are associated with pancreatic lesion-induced cachexia in patients without jaundice. TIMP-1 is counterindicated as a survival marker in patients with jaundice.


Asunto(s)
Biomarcadores de Tumor/sangre , Carcinoma Ductal Pancreático/sangre , Neoplasias Pancreáticas/sangre , Pancreatitis Crónica/sangre , Inhibidor Tisular de Metaloproteinasa-1/sangre , Adulto , Anciano , Anciano de 80 o más Años , Carcinoma Ductal Pancreático/complicaciones , Femenino , Humanos , Masculino , Persona de Mediana Edad , Neoplasias Pancreáticas/complicaciones , Pancreatitis Crónica/complicaciones , Estudios Retrospectivos , Adulto Joven
16.
Toxicol Lett ; 293: 235-240, 2018 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-29154801

RESUMEN

Isolated organs proofed to be a robust tool to study effects of (potential) therapeutics in organophosphate poisoning. Small bowel samples have been successfully used to reveal smooth muscle relaxing effects. In the present study, the effects of obidoxime, TMB-4, HI-6 and MB 327 were investigated on human small bowel tissue and compared with rat data. Hereby, the substances were tested in at least seven different concentrations in the jejunum or ileum both pre-contracted with carbamoylcholine. Additionally, the cholinesterase activity of native tissue was determined. Human small intestine specimens showed classical dose response-curves, similar to rat tissue, with MB 327 exerting the most potent smooth muscle relaxant effect in both species (human EC50=0.7×10-5M and rat EC50=0.7×10-5M). The AChE activity for human and rat samples did not differ significantly (rat jejunum=1351±166 mU/mg wet weight; rat ileum=1078±123 mU/mg wet weight; human jejunum=1030±258 mU/mg wet weight; human ileum=1293±243 mU/mg wet weight). Summarizing, our isolated small bowel setup seems to be a solid tool to investigate the effects of (potential) therapeutics on pre-contracted smooth muscle, with data being transferable between rat and humans.


Asunto(s)
Antídotos/uso terapéutico , Intestino Delgado/efectos de los fármacos , Músculo Liso/efectos de los fármacos , Intoxicación por Organofosfatos/tratamiento farmacológico , Anciano , Anciano de 80 o más Años , Animales , Carbacol/farmacología , Reactivadores de la Colinesterasa/farmacología , Relación Dosis-Respuesta a Droga , Femenino , Humanos , Íleon/efectos de los fármacos , Técnicas In Vitro , Yeyuno/efectos de los fármacos , Masculino , Persona de Mediana Edad , Modelos Biológicos , Agonistas Muscarínicos/farmacología , Contracción Muscular/efectos de los fármacos , Ratas , Ratas Wistar
17.
Nutr Cancer ; 69(1): 84-91, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27897439

RESUMEN

BACKGROUND: Interleukin-4 (IL-4) together with interleukin-13 (IL-13) play an important role in inflammation and wound repair, and are known to be upregulated in human skeletal muscle after strenuous physical exercise. Additionally, these cytokines may act as autocrine growth factors in pancreatic cancer cells. We hypothesize that IL-4, IL-13, and their corresponding receptors are involved in mechanism of cancer cachexia. METHODS: Tissue samples from human skeletal muscle, white fat, liver, healthy pancreas, and pancreatic ductal adenocarcinoma were analyzed by quantitative real-time polymerase chain reaction for mRNA expression levels of IL-4, IL-13, IL-4 receptor α, and IL-13 receptor α1. RESULTS: We demonstrate for the first time that liver IL-4 mRNA is downregulated in vivo in patients with pancreatic cancer and cachexia. Additionally, IL-4 mRNA in the liver inversely correlated with musculus psoas thickness. CONCLUSION: We speculate that suppression of IL-4 is involved in cancer cachexia, although the exact mechanisms have to be further elucidated.


Asunto(s)
Caquexia/genética , Interleucina-4/genética , Hígado/fisiología , Neoplasias Pancreáticas/genética , Adulto , Anciano , Anciano de 80 o más Años , Caquexia/etiología , Carcinoma Ductal Pancreático/complicaciones , Carcinoma Ductal Pancreático/genética , Regulación hacia Abajo , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Interleucina-13/genética , Subunidad alfa1 del Receptor de Interleucina-13/genética , Subunidad alfa del Receptor de Interleucina-4/genética , Hígado/patología , Masculino , Persona de Mediana Edad , Neoplasias Pancreáticas/complicaciones , Reacción en Cadena en Tiempo Real de la Polimerasa , Estudios Retrospectivos , Neoplasias Pancreáticas
18.
Gastroenterology ; 151(5): 1011-1024.e7, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27506299

RESUMEN

BACKGROUND & AIMS: Pancreatic ductal adenocarcinoma (PDAC) metastasizes to liver at early stages, making this disease highly lethal. Tissue inhibitor of metalloproteinases-1 (TIMP1) creates a metastasis-susceptible environment in the liver. We investigated the role of TIMP1 and its receptor CD63 in metastasis of early-stage pancreatic tumors using mice and human cell lines and tissue samples. METHODS: We obtained liver and plasma samples from patients in Germany with chronic pancreatitis, pancreatic intra-epithelial neoplasia, or PDAC, as well as hepatic stellate cells (HSCs). We performed studies with Ptf1a+/Cre;Kras+/LSL-G12D;Trp53loxP/loxP (CPK) mice, Pdx-1+/Cre;Kras+/LSL-G12D;Trp53+/LSL-R172H (KPC) mice, and their respective healthy littermates as control, and Cd63-/- mice with their wild-type littermates. KPC mice were bred with Timp1-/- mice to produce KPCxTimp1-/- mice. TIMP1 was overexpressed and CD63 was knocked down in mice using adenoviral vectors AdTIMP1 or AdshCD63, respectively. Hepatic susceptibility to metastases was determined after intravenous inoculation of syngeneic 9801L pancreas carcinoma cells. Pancreata and liver tissues were collected and analyzed by histology, immunohistochemical, immunoblot, enzyme-linked immunosorbent assay, and quantitative polymerase chain reaction analyses. We analyzed the effects of TIMP1 overexpression or knockdown and CD63 knockdown in transduced human primary HSCs and HSC cell lines. RESULTS: Chronic pancreatitis, pancreatic intra-epithelial neoplasia, and PDAC tissues from patients expressed higher levels of TIMP1 protein than normal pancreas. The premalignant pancreatic lesions that developed in KPC and CPK mice expressed TIMP1 and secreted it into the circulation. In vitro and in vivo, TIMP1 activated human or mouse HSCs, which required interaction between TIMP1 and CD63 and signaling via phosphatidylinositol 3-kinase, but not TIMP1 protease inhibitor activity. This signaling pathway induced expression of endogenous TIMP1. TIMP1 knockdown in HSCs reduced their activation. Cultured TIMP1-activated human and mouse HSCs began to express stromal-derived factor-1, which induced neutrophil migration, a marker of the premetastatic niche. Mice with pancreatic intra-epithelial neoplasia-derived systemic increases in TIMP1 developed more liver metastases after injections of pancreatic cancer cells than mice without increased levels of TIMP1. This increase in formation of liver metastases from injected pancreatic cancer cells was not observed in TIMP1 or CD63 knockout mice. CONCLUSIONS: Expression of TIMP1 is increased in chronic pancreatitis, pancreatic intra-epithelial neoplasia, and PDAC tissues from patients. TIMP1 signaling via CD63 leads to activation of HSCs, which create an environment in the liver that increases its susceptibility to pancreatic tumor cells. Strategies to block TIMP1 signaling via CD63 might be developed to prevent PDAC metastasis to the liver.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Neoplasias Pancreáticas/metabolismo , Lesiones Precancerosas/metabolismo , Tetraspanina 30/metabolismo , Inhibidor Tisular de Metaloproteinasa-1/metabolismo , Animales , Carcinoma in Situ/metabolismo , Carcinoma in Situ/patología , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patología , Carcinoma Ductal Pancreático/secundario , Estudios de Casos y Controles , Línea Celular Tumoral , Femenino , Células Estrelladas Hepáticas/metabolismo , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/secundario , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Ratones Noqueados , Metástasis de la Neoplasia , Páncreas/metabolismo , Páncreas/patología , Neoplasias Pancreáticas/patología , Pancreatitis Crónica/metabolismo , Pancreatitis Crónica/patología , Lesiones Precancerosas/patología , Transducción de Señal , Microambiente Tumoral
19.
BMC Res Notes ; 9: 126, 2016 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-26920730

RESUMEN

BACKGROUND: Maffucci syndrome is characterized by the sporadic occurrence of multiple enchondromas together with multiple hemangiomas. Patients with Maffucci syndrome are at increased risk of developing different kinds of malignant tumors. CASE PRESENTATION: We report on a 39-year-old woman who was diagnosed with Maffucci syndrome together with intrahepatic cholangiocarcinoma (IHCC). Heterozygous somatic mutations in the isocitrate dehydrogenase 1 and 2 (IDH1/IDH2) genes are associated with a number of different tumor types (e.g. IHCC) and also with Maffucci syndrome. For IHCC, mutations in IDH1/IDH2 are associated with higher survival rates. IHCC tissue as well as normal liver tissue and peripheral blood were analyzed for IDH1/IDH2-mutations in our patient. In the tumor sample, we identified a recurrent somatic IDH1-mutation affecting Arg132, while in normal liver tissue and peripheral blood, no variants were detected, as expected. CONCLUSION: This case report presents the second patient in the literature exhibiting the features of Maffucci syndrome along with cholangiocarcinoma. This supports the hypothesis that IDH1/2-mutations, which can be present in different types of tumor tissue simultaneously, arise during embryonic development in a mosaic pattern; as a result, a more aggressive follow-up is proposed in patients with Maffucci syndrome to exclude neoplasms.


Asunto(s)
Colangiocarcinoma/diagnóstico , Encondromatosis/diagnóstico , Hemangioma/diagnóstico , Isocitrato Deshidrogenasa/genética , Neoplasias Hepáticas/diagnóstico , Adulto , Colangiocarcinoma/complicaciones , Colangiocarcinoma/genética , Colangiocarcinoma/patología , Encondromatosis/complicaciones , Encondromatosis/genética , Encondromatosis/patología , Femenino , Expresión Génica , Hemangioma/complicaciones , Hemangioma/genética , Hemangioma/patología , Humanos , Neoplasias Hepáticas/complicaciones , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Mutación
20.
BMC Cancer ; 16: 75, 2016 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-26856534

RESUMEN

BACKGROUND: Cachexia is a multi-factorial, systemic syndrome that especially affects patients with cancer of the gastrointestinal tract, and leads to reduced treatment response, survival and quality of life. The most important clinical feature of cachexia is the excessive wasting of skeletal muscle mass. Currently, an effective treatment is still lacking and the search for therapeutic targets continues. Even though a substantial number of animal studies have contributed to a better understanding of the underlying mechanisms of the loss of skeletal muscle mass, subsequent clinical trials of potential new drugs have not yet yielded any effective treatment for cancer cachexia. Therefore, we questioned to which degree findings from animal studies can be translated to humans in clinical practice and research. DISCUSSION: A substantial amount of animal studies on the molecular mechanisms of muscle wasting in cancer cachexia has been conducted in recent years. This extensive review of the literature showed that most of their observations could not be consistently reproduced in studies on human skeletal muscle samples. However, studies on human material are scarce and limited in patient numbers and homogeneity. Therefore, their results have to be interpreted critically. More research is needed on human tissue samples to clarify the signaling pathways that lead to skeletal muscle loss, and to confirm pre-selected drug targets from animal models in clinical trials. In addition, improved diagnostic tools and standardized clinical criteria for cancer cachexia are needed to conduct standardized, randomized controlled trials of potential drug candidates in the future.


Asunto(s)
Caquexia/patología , Músculo Esquelético/patología , Neoplasias/patología , Animales , Caquexia/complicaciones , Caquexia/metabolismo , Modelos Animales de Enfermedad , Humanos , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Atrofia Muscular/patología , Neoplasias/complicaciones , Neoplasias/metabolismo , Pérdida de Peso
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...