Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Life Sci ; 317: 121443, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36709910

RESUMEN

There is a scarcity of data regarding the acclimation to high altitude (hypoxic environment) accompanied by training at low altitude (normoxic conditions), the so-called "living high-training low" (LHTL) model in rodents. We aimed to investigate the effects of aerobic training on C57BL/6J mice living in normoxic (NOR) or hypoxic (HYP) environments on several parameters, including critical velocity (CV), a parameter regarded as a measure of aerobic capacity, on monocarboxylate transporters (MCTs) in muscles and hypothalamus, as well as on hematological parameters and body temperature. In each environment, mice were divided into non-trained (N) and trained (T). Forty rodents were distributed into the following experimental groups (N-NOR; T-NOR; N-HYP and T-HYP). HYP groups were in a normobaric tent where oxygen-depleted air was pumped from a hypoxia generator set an inspired oxygen fraction [FiO2] of 14.5 %. The HYP-groups were kept (18 h per day) in a normobaric tent for consecutive 8-weeks. Training sessions were conducted in normoxic conditions ([FiO2] = 19.5 %), 5 times per week (40 min per session) at intensity equivalent to 80 % of CV. In summary, eight weeks of LHTL did not promote a greater improvement in the CV, protein expression of MCTs in different tissues when compared to the application of training alone. The LHTL model increased red blood cells count, but reduced hemoglobin per erythrocyte was found in mice exposed to LHTL. Although the LHTL did not have a major effect on thermographic records, exercise-induced hyperthermia (in the head) was attenuated in HYP groups when compared to NOR groups.


Asunto(s)
Equilibrio Ácido-Base , Hipoxia , Animales , Ratones , Ratones Endogámicos C57BL , Hipoxia/metabolismo , Oxígeno , Tolerancia al Ejercicio/fisiología , Consumo de Oxígeno/fisiología
2.
Brain Res Bull ; 175: 116-129, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34303768

RESUMEN

BACKGROUND: Oxidation resistance protein 1 (OXR1) is of scientific interest due its role in protecting tissues against oxidative stress, DNA mutations and tumorigenesis, but little is known regarding strategies to increase OXR1 in different tissues. As an improved antioxidant defense may result from a high total amount of physical activity, the present study was designed to determine whether an active lifestyle including aerobic training exercise and spontaneous physical activity (SPA) can increase OXR1. We have built a large cage (LC) that allows animals to move freely, promoting an increase in SPA in comparison to a small cage (SC). METHODS: We examined the effects of aerobic training applied for 8 weeks on SPA and OXR1 of C57BL/6 J mice living in two types of housing (SC and LC). OXR1 protein was studied in hypothalamus, muscle and liver, which were chosen due to their important role in energy and metabolic homeostasis. RESULTS: LC-mice were more active than SC-mice as determined by SPA values. Despite both trained groups exhibiting similar gains in aerobic capacity, only trained mice kept in a large cage (but not for trained mice housed in SC) exhibited high OXR1 in the hypothalamus and liver. Trained mice housed in LC that exhibited an up-regulation of OXR1 also were those who exhibited an energy-expensive metabolism (based on metabolic parameters). CONCLUSIONS: These results suggest that aerobic training associated with a more active lifestyle exerts a protective effect against oxidative damage and may be induced by changes in energy metabolism.


Asunto(s)
Metabolismo Energético/fisiología , Hipotálamo/metabolismo , Hígado/metabolismo , Proteínas Mitocondriales/genética , Estrés Oxidativo , Condicionamiento Físico Animal/fisiología , Umbral Anaerobio , Animales , Antioxidantes/metabolismo , Vivienda para Animales , Hipotálamo/patología , Hígado/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas Mitocondriales/fisiología , Músculo Esquelético/metabolismo
3.
Horm Behav ; 115: 104556, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31310763

RESUMEN

There is evidence of reduced adiposity in rodents living in a large cages (LC) as compared to animals housed in small cages (SC). Because spontaneous physical activity (SPA) provides an important portion of the total daily energy expenditure, an increase of SPA in rodents kept in LC could explain their reduced body fat accumulation. The relationship between SPA and components of physical fitness (i.e. aerobic and anaerobic fitness and body leanness) has not been previously determined. We examined the effects of eight weeks of LC exposure on SPA, body composition, feeding behavior, as well as aerobic and anaerobic running capacity in adult C57BL/6J mice. Male mice were housed in cages of two different sizes for 8 weeks: a small (SC, n = 10) and large (LC n = 10) cages with 1320 cm2 and 4800 cm2 floor space, respectively. SPA was measured gravimetrically, and food and water intake were recorded daily. Mice had critical velocity (CV) and anaerobic running capacity (ARC) evaluated at the beginning, middle course (4th week) and at the end of study (8th week). Despite non-significant differences in each week LC-mice were more active than SC-mice by considering all SPA values obtained in the entire period of 8 weeks. The difference in SPA over the whole day was mainly due to light phase activity, but also due to activity at dark period (from 6 pm to 9 pm and from 5 am to 6 am). LC-mice also exhibited higher food and water intake over the entire 8-wk period. LC-mice had lower content of fat mass (% of the eviscerated carcass) than SC-mice (SC: 8.4 ±â€¯0.4 vs LC: 6.3 ±â€¯0.3, p < 0.05). LC-mice also exhibited reduced epididymal fat pads (% of body mass) compared to SC-mice (SC: 1.3 ±â€¯0.1 vs LC: 0.9 ±â€¯0.1, p < 0.05) and retroperitoneal fat pads (SC: 0.4 ±â€¯0.05 vs LC: 0.2 ±â€¯0.02, p < 0.05). The LC-group showed significantly higher critical velocity than SC-group at the fourth week (SC: 14.9 ±â€¯0.6 m·min-1 vs LC: 18.0 ±â€¯0.3 m·min-1, p < 0.05) and eighth week (SC: 17.1 ±â€¯0.5 m·min-1 vs LC: 18.8 ±â€¯0.6 m·min-1, p < 0.05). Our findings demonstrate that eight weeks of LC housing increases SPA of C57BL/6J mice, and this may lead to reduced fat accumulation as well as higher aerobic fitness. Importantly, our study implies that SC limits SPA, possibly generating experimental artifacts in long-term rodent studies.


Asunto(s)
Adiposidad/fisiología , Conducta Animal/fisiología , Vivienda para Animales , Locomoción/fisiología , Actividad Motora/fisiología , Animales , Masculino , Ratones , Ratones Endogámicos C57BL
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA