Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Lab Chip ; 24(3): 517-527, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38165913

RESUMEN

Optical fiber tweezers offer a simple, low-cost and portable solution for non-invasive trapping and manipulation of particles. However, single-fiber tweezers require fiber tip modification (tapering, lensing, etc.) and the dual-fiber approach demands strict alignment and positioning of fibers for robust trapping of particles. In addition, both tweezing techniques offer a limited range of particle manipulation and operate in low flow velocity regimes (a few 100 µm s-1) when integrated with microfluidic devices. In this paper, we report a novel opto-hydrodynamic fiber tweezers (OHT) platform that exploits the balance between the hydrodynamic drag force and optical scattering forces to trap and manipulate single or multiple particles of various shapes, sizes, and material compositions in a microfluidic channel. 3D hydrodynamic flow focusing offers an easy and dynamic alignment of the particle trajectories with the optical axis of the fiber, which enables robust trapping of particles with high efficiency of >70% and throughput of 14 particles per minute (operating flow velocity: 1000 µm s-1) without the need for precision stages or complex fabrication. By regulating the optical power and flow rates, we were able to trap single particles at desired positions in the channel with a precision of ±10 µm as well as manipulate them over a long range upstream or downstream with a maximum distance of 500 µm. Our opto-hydrodynamic tweezers offer an alternative to conventional optical fiber tweezers for several applications in physics, biology, medicine, etc.

2.
Biofabrication ; 15(4)2023 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-37473749

RESUMEN

In this work, we present an innovative, high-throughput rotary wet-spinning biofabrication method for manufacturing cellularized constructs composed of highly-aligned hydrogel fibers. The platform is supported by an innovative microfluidic printing head (MPH) bearing a crosslinking bath microtank with a co-axial nozzle placed at the bottom of it for the immediate gelation of extruded core/shell fibers. After a thorough characterization and optimization of the new MPH and the fiber deposition parameters, we demonstrate the suitability of the proposed system for thein vitroengineering of functional myo-substitutes. The samples produced through the described approach were first characterizedin vitroand then used as a substrate to ascertain the effects of electro-mechanical stimulation on myogenic maturation. Of note, we found a characteristic gene expression modulation of fast (MyH1), intermediate (MyH2), and slow (MyH7) twitching myosin heavy chain isoforms, depending on the applied stimulation protocol. This feature should be further investigated in the future to biofabricate engineered myo-substitutes with specific functionalities.


Asunto(s)
Bioimpresión , Hidrogeles , Hidrogeles/química , Desarrollo de Músculos/genética , Microfluídica , Bioimpresión/métodos , Impresión Tridimensional , Ingeniería de Tejidos/métodos , Andamios del Tejido/química
3.
Micromachines (Basel) ; 11(2)2020 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-32012854

RESUMEN

We demonstrate the utility of non-contact printing to fabricate the mAST-an easy-to-operate, microwell-based microfluidic device for combinatorial antibiotic susceptibility testing (AST) in a point-of-care format. The wells are prefilled with antibiotics in any desired concentration and combination by non-contact printing (spotting). For the execution of the AST, the only requirements are the mAST device, the sample, and the incubation chamber. Bacteria proliferation can be continuously monitored by using an absorbance reader. We investigate the profile of resistance of two reference Escherichia coli strains, report the minimum inhibitory concentration (MIC) for single antibiotics, and assess drug-drug interactions in cocktails by using the Bliss independence model.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA