Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Exp Brain Res ; 242(7): 1807-1819, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38839618

RESUMEN

Mental fatigue (MF) and hypoxia impair cognitive performance through changes in brain hemodynamics. We want to elucidate the role of prefrontal cortex (PFC)-oxygenation in MF. Twelve participants (22.9 ± 3.5 years) completed four experimental trials, (1) MF in (normobaric) hypoxia (MF_HYP) (3.800 m; 13.5%O2), (2) MF in normoxia (MF_NOR) (98 m; 21.0%O2), (3) Control task in HYP (CON_HYP), (4) Control in NOR (CON_NOR). Participants performed a 2-back task, Digit Symbol Substitution test and Psychomotor Vigilance task before and after a 60-min Stroop task or an emotionally neutral documentary. Brain oxygenation was measured through functional Near Infrared Spectroscopy. Subjective feelings of MF and physiological measures (heart rate, oxygen saturation, blood glucose and hemoglobin) were recorded. The Stroop task resulted in increased subjective feelings of MF compared to watching the documentary. 2-back accuracy was lower post task compared to pre task in MF_NOR and CON_NOR, while no differences were found in the other cognitive tasks. The fraction of inspired oxygen did not impact feelings of MF. Although performing the Stroop resulted in higher subjective feelings of MF, hypoxia had no effect on the severity of self-reported MF. Additionally, this study could not provide evidence for a role of oxygenation of the PFC in the build-up of MF.


Asunto(s)
Hipoxia , Fatiga Mental , Corteza Prefrontal , Espectroscopía Infrarroja Corta , Humanos , Corteza Prefrontal/metabolismo , Corteza Prefrontal/fisiología , Masculino , Adulto , Adulto Joven , Femenino , Hipoxia/fisiopatología , Hipoxia/metabolismo , Fatiga Mental/fisiopatología , Fatiga Mental/metabolismo , Desempeño Psicomotor/fisiología , Test de Stroop , Oxígeno/sangre , Oxígeno/metabolismo , Frecuencia Cardíaca/fisiología , Pruebas Neuropsicológicas
2.
Physiol Behav ; 282: 114586, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38763379

RESUMEN

This study explored how mental fatigue affects brain activity during a low-intensity bike task utilising a continuous wavelet transformation in electroencephalography (EEG) analysis. The aim was to examine changes in brain activity potentially linked to central motor commands and to investigate their relationship with ratings of perceived exertion (RPE). In this study, sixteen participants (age: 21 ± 6 y, 7 females, 9 males) underwent one familiarization and two experimental trials in a randomised, blinded, cross-over study design. Participants executed a low-intensity bike task (9 min; 45 rpm; intensity (W): 10 % below aerobic threshold) after performing a mentally fatiguing (individualized 60-min Stroop task) or a control (documentary) task. Physiological (heart rate, EEG) and subjective measures (self-reported feeling of mental fatigue, RPE, cognitive load, motivation) were assessed prior, during and after the bike task. Post-Stroop, self-reported feeling of mental fatigue was higher in the intervention group (EXP) (74 ± 16) than in the control group (CON) (37 ± 17; p < 0.001). No significant differences in RPE during the bike task were observed between conditions. EEG analysis revealed significant differences (p < 0.05) in beta frequency (13-30 Hz) during the bike task, with EXP exhibiting more desynchronization during the pedal push phase and synchronization during the pedal release phase. These results suggest that mental fatigue, confirmed by both subjective and neurophysiological markers, did not significantly impact RPE during the bike task, possibly due to the use of the CR100 scale or absence of a performance outcome. However, EEG data did reveal significant beta band alterations during the task, indicating increased neural effort under mental fatigue. These findings reveal, for the first time, how motor-related brain activity at the motor cortex is impacted during a low-intensity bike task when mentally fatigued.


Asunto(s)
Ciclismo , Encéfalo , Electroencefalografía , Fatiga Mental , Análisis de Ondículas , Humanos , Masculino , Fatiga Mental/fisiopatología , Femenino , Adulto Joven , Ciclismo/fisiología , Adulto , Encéfalo/fisiología , Estudios Cruzados , Frecuencia Cardíaca/fisiología , Adolescente , Esfuerzo Físico/fisiología
3.
Med Sci Sports Exerc ; 56(3): 435-445, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-37847068

RESUMEN

PURPOSE: Several mechanisms have been proposed to explain how mental fatigue degrades sport performance. In terms of endurance performance, a role for an increased perceived exertion has been demonstrated. Using electroencephalography and, more specifically, the movement-related cortical potential (MRCP), the present study explored the neural mechanisms that could underlie the mental fatigue-associated increase in perceived exertion. METHODS: Fourteen participants (age, 23 ± 2 yr; 5 women, 9 men) performed one familiarization and two experimental trials in a randomized, blinded, crossover study design. Participants had to complete a submaximal leg extension task after a mentally fatiguing task (EXP; individualized 60-min Stroop task) or control task (CON; documentary). The leg extension task consisted of performing 100 extensions at 35% of 1 repetition maximum, during which multiple physiological (heart rate, electroencephalography) and subjective measures (self-reported feeling of mental fatigue, cognitive load, behand motivation, ratings of perceived exertion) were assessed. RESULTS: Self-reported feeling of mental fatigue was higher in EXP (72 ± 18) compared with CON (37 ± 17; P < 0.001). A significant decrease in flanker accuracy was detected only in EXP (from 0.96 ± 0.03% to 0.03%; P < 0.05). No significant differences between conditions were found in MRCP characteristics and perceived exertion. Specifically in EXP, alpha wave power increased during the leg extension task ( P < 0.01). CONCLUSIONS: Mental fatigue did not impact the perceived exertion or MRCP characteristics during the leg extension task. This could be related to low perceived exertion and/or the absence of a performance outcome during the leg extension task. The increase in alpha power during the leg extension task in EXP suggests that participants may engage a focused internal attention mechanism to maintain performance and mitigate feelings of fatigue.


Asunto(s)
Resistencia Física , Deportes , Masculino , Humanos , Femenino , Adulto Joven , Adulto , Estudios Cruzados , Resistencia Física/fisiología , Estado Nutricional , Fatiga Mental
5.
Sports Med Open ; 9(1): 14, 2023 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-36808018

RESUMEN

BACKGROUND: The negative effect of mental fatigue (MF) on physical performance has recently been questioned. One reason behind this could lie in the interindividual differences in MF-susceptibility and the individual features influencing them. However, the range of individual differences in mental fatigue-susceptibility is not known, and there is no clear consensus on which individual features could be responsible for these differences. OBJECTIVE: To give an overview of interindividual differences in the effects of MF on whole-body endurance performance, and individual features influencing this effect. METHODS: The review was registered on the PROSPERO database (CRD42022293242). PubMed, Web of Science, SPORTDiscus and PsycINFO were searched until the 16th of June 2022 for studies detailing the effect of MF on dynamic maximal whole-body endurance performance. Studies needed to include healthy participants, describe at least one individual feature in participant characteristics, and apply at least one manipulation check. The Cochrane crossover risk of bias tool was used to assess risk of bias. The meta-analysis and regression were conducted in R. RESULTS: Twenty-eight studies were included, with 23 added to the meta-analysis. Overall risk of bias of the included studies was high, with only three presenting an unclear or low rating. The meta-analysis shows the effect of MF on endurance performance was on average slightly negative (g = - 0.32, [95% CI - 0.46; - 0.18], p < 0.001). The multiple meta-regression showed no significant influences of the included features (i.e. age, sex, body mass index and physical fitness level) on MF-susceptibility. CONCLUSIONS: The present review confirmed the negative impact of MF on endurance performance. However, no individual features influencing MF-susceptibility were identified. This can partially be explained by the multiple methodological limitations such as underreporting of participant characteristics, lack of standardization across studies, and the restricted inclusion of potentially relevant variables. Future research should include a rigorous description of multiple different individual features (e.g., performance level, diet, etc.) to further elucidate MF mechanisms.

6.
Sports Med ; 52(9): 2129-2158, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35543922

RESUMEN

INTRODUCTION: Mental fatigue (MF) is a psychobiological state that impairs cognitive as well as physical performance in different settings. Recently, numerous studies have sought ways to counteract these negative effects of MF. An overview of the explored countermeasures for MF is, however, lacking. OBJECTIVES: The objective of this review is to provide an overview of the different MF countermeasures currently explored in literature. Countermeasures were classified by the timing of application (before, during or after the moment of MF) and type of intervention (behavioural, physiological and psychological). METHODS: The databases of PubMed (MEDLINE), Web of Science and PsycINFO were searched until March 7, 2022. Studies were eligible when MF was induced using a task with a duration of at least 30 min, when they assessed MF markers in at least two out of the three areas wherein MF markers have been defined (i.e., behavioural, subjective and/or [neuro]physiological) and used a placebo or control group for the countermeasure. RESULTS: A total of 33 studies investigated one or more countermeasures against MF. Of these, eight studies assessed a behavioural countermeasure, 22 a physiological one, one a psychological countermeasure and two a combination of a behavioural and psychological countermeasure. The general finding was that a vast majority of the countermeasures induced a positive effect on behavioural (e.g., task or sport performance) and/or subjective MF markers (e.g., visual analogue scale for MF or alertness). No definitive conclusion could be drawn regarding the effect of the employed countermeasures on (neuro)physiological markers of MF as only 19 of the included studies investigated these measures, and within these a large heterogeneity in the evaluated (neuro)physiological markers was present. DISCUSSION: Within the physiological countermeasures it seems that the use of odours during a MF task or caffeine before the MF task are the most promising interventions in combating MF. Promising behavioural (e.g., listening to music) and psychological (e.g., extrinsic motivation) countermeasures of MF have also been reported. The most assumed mechanism through which these countermeasures operate is the dopaminergic system. However, this mechanism remains speculative as (neuro)physiological markers of MF have been scarcely evaluated to date. CONCLUSION: The present systematic review reveals that a wide range of countermeasures have been found to successfully counteract MF on a subjective, (neuro)physiological and/or behavioural level. Of these, caffeine, odours, music and extrinsic motivation are the most evidenced for countering MF. To provide in-detail practical guidelines for the real-life application of MF countermeasures, more research must be performed into the underlying mechanisms and into the optimal dosage and time of application/intake.


Asunto(s)
Cafeína , Fatiga Mental , Humanos , Fatiga Mental/prevención & control , Motivación
7.
Artículo en Inglés | MEDLINE | ID: mdl-34948514

RESUMEN

Mental fatigue (MF) is a psychobiological state negatively impacting both cognitive and physical performance. Although recent research implies that some table tennis (TT) performance outcomes are impaired by MF, open skill sports such as TT require a more detailed overview of MF-related performance decrements. Moreover, research into MF and sport-specific psychomotor performance lacks the inclusion of brain-related measurements to identify MF mechanisms. Eleven experienced TT players participated in this randomized counterbalanced crossover trial. Participants were either required to perform an individualized Stroop task (MF condition) or watch a documentary (control condition). The primary outcomes were reaction time on a sport-specific visuomotor task and EEG activity throughout the trial. The subjective feeling of MF was significantly different between both conditions and confirmed that the MF condition induced the mentally fatigue state of participants (p < 0.001), though no behavioral indicators (i.e., decrease in performance on Stroop and flanker task) of MF. MF worsened reaction time on the visuomotor task, while other secondary measurements remained largely ambiguous. Spectral power (i.e., decreases in upper α band and θ band) was influenced by MF, while ERPs measured during the visuomotor task remained unaltered. The present study confirms that MF negatively impacts table tennis performance, specifically inhibitory stimuli during the visuomotor task. These findings also further augment our understanding of the effects of MF on human performance.


Asunto(s)
Tenis , Humanos , Fatiga Mental , Desempeño Psicomotor , Tiempo de Reacción , Test de Stroop
8.
Front Physiol ; 12: 761232, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34764885

RESUMEN

Introduction: A myriad of factors underlie pacing-/exhaustion-decisions that are made during whole-body endurance performance. The prefrontal cortex (PFC) is a brain region that is crucial for decision-making, planning, and attention. PFC oxygenation seems to be a mediating factor of performance decisions during endurance performance. Nowadays, there is no general overview summarizing the current knowledge on how PFC oxygenation evolves during whole-body endurance performance and whether this is a determining factor. Methods: Three electronic databases were searched for studies related to the assessment of PFC oxygenation, through near-IR spectroscopy (NIRS), during endurance exercise. To express PFC oxygenation, oxygenated (HbO2) and deoxygenated hemoglobin (HHb) concentrations were the primary outcome measures. Results: Twenty-eight articles were included. Ten articles focused on assessing prefrontal oxygenation through a maximal incremental test (MIT) and 18 focused on using endurance tasks at workloads ranging from low intensity to supramaximal intensity. In four MIT studies measuring HbO2, an increase of HbO2 was noticed at the respiratory compensation point (RCP), after which it decreased. HbO2 reached a steady state in the four studies and increased in one study until exhaustion. All studies found a decrease or steady state in HHb from the start until RCP and an increase to exhaustion. In regard to (non-incremental) endurance tasks, a general increase in PFC oxygenation was found while achieving a steady state at vigorous intensities. PCF deoxygenation was evident for near-to-maximal intensities at which an increase in oxygenation and the maintenance of a steady state could not be retained. Discussion/Conclusion: MIT studies show the presence of a cerebral oxygenation threshold (ThCox) at RCP. PFC oxygenation increases until the RCP threshold, thereafter, a steady state is reached and HbO2 declines. This study shows that the results obtained from MIT are transferable to non-incremental endurance exercise. HbO2 increases during low-intensity and moderate-intensity until vigorous-intensity exercise, and it reaches a steady state in vigorous-intensity exercise. Furthermore, ThCox can be found between vigorous and near-maximal intensities. During endurance exercise at near-maximal intensities, PFC oxygenation increases until the value exceeding this threshold, resulting in a decrease in PFC oxygenation. Future research should aim at maintaining and improving PFC oxygenation to help in improving endurance performance and to examine whether PFC oxygenation has a role in other performance-limiting factors.

10.
Sports Med ; 51(7): 1527-1548, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33710524

RESUMEN

BACKGROUND: Mental fatigue (MF) is a psychobiological state that impairs endurance performance in healthy athletes. Recently, multiple studies indicated that MF could also impair sport-specific psychomotor performance (SSPP). Nevertheless, a systematic overview detailing the effects of MF on SSPP is currently lacking. OBJECTIVE: The objective of this study is to collate relevant literature and examine the effect of MF on SSPP. A secondary aim was to create an overview of the potential subjective and physiological factors underlying this MF effect. METHODS: PubMed (MEDLINE), Web of Science, PsycINFO and SPORTDiscus were searched (5th of November 2020). Studies were eligible when study outcomes encompassed any form of SSPP skill in a sport-specific context, the intervention was targeted to induce MF, and the population included healthy individuals. The presence of a manipulation check, to indicate the successful induction of MF, was obligatory for inclusion. Secondary outcomes were all outcomes (either physiological or psychological) that could explain the underlying mechanisms of the effect of MF on SSPP. RESULTS: In total, 21 papers were included. MF was successfully induced in all but two studies, which were excluded from further analysis. MF negatively impacts a myriad of SSPP outcomes, including decision-making, reaction time and accuracy outcomes. No changes in physiological outcomes, that could underlie the effect of MF, were reported. Subjectively, only ratings of perceived of exertion increased due to MF in some studies. CONCLUSIONS: Overall, the selected papers indicated that MF negatively affects SSPP. Research that assesses brain function, while evaluating the effect of MF on SSPP is essential to create further insight.


Asunto(s)
Fatiga Mental , Deportes , Atletas , Cognición , Humanos , Desempeño Psicomotor
11.
Med Sci Sports Exerc ; 52(9): 2002-2010, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32102059

RESUMEN

PURPOSE: Mental fatigue impairs psychomotor skill performance by affecting visuomotor reaction time, accuracy, and decision-making. Recently, neurocognitive functional performance tests (FPT) that integrate these outcomes have been developed. The aim of this study was to assess the effect of mental fatigue on traditional and neurocognitive FPT in healthy adults. METHODS: Fourteen volunteers (four women; mean ± SD age, 22 ± 1 yr; height, 176.9 ± 8.4 cm; weight, 69.7 ± 10.4 kg) participated in a randomized counterbalanced crossover design. A 100% incongruent Stroop color word test of 90 min was used to induce mental fatigue and the control task encompassed watching a 90-min documentary. Traditional FPT comprised a single-leg hop for distance, countermovement jump, and Y-balance test, whereas the neurocognitive FPT encompassed the reactive balance test (RBT). All FPTs were evaluated pre-post the 90-min task. Mental fatigue was assessed using the Stroop task, visual analog scale for mental fatigue, and the Eriksen-Flanker task. RESULTS: Mental fatigue was successfully induced, as shown by a significant increase in visual analog scale for mental fatigue (P < 0.001), with no decrease in performance on the Stroop and Eriksen-Flanker task. No interaction effect of mental fatigue was found for the Y-balance test, single-leg hop, and countermovement jump. For the RBT accuracy, a significant interaction effect of mental fatigue and time was observed (P = 0.024), with participants performing significantly worse when mentally fatigued. No interaction effect or main effect of condition and time was observed when considering the effect of mental fatigue on visuomotor reaction time in the RBT. CONCLUSIONS: Mental fatigue negatively affects a neurocognitive FPT, indicated by a decreased accuracy in response to visual stimuli in the RBT. Traditional FPT remained unaffected by mental fatigue.


Asunto(s)
Fatiga Mental/fisiopatología , Desempeño Psicomotor/fisiología , Estudios Cruzados , Toma de Decisiones , Prueba de Esfuerzo , Femenino , Humanos , Masculino , Pruebas Neuropsicológicas , Tiempo de Reacción , Adulto Joven
12.
Sports Med ; 50(4): 767-784, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31782066

RESUMEN

BACKGROUND: Acute fatigue is hypothesized to alter lower extremity injury risk profiles by affecting intrinsic risk factors (i.e. single leg postural control, hamstring strength). However, no systematic overview exists that merges the insights into prospective lower extremity injury risk profiling with the effect of acute fatigue on functional test performance. OBJECTIVE: The objective of this review is to identify the influence of acute fatigue on prospectively determined modifiable intrinsic risk factors for lower extremity injuries. DESIGN: Systematic review. METHODS: PubMed (MEDLINE), Web of Science, PEDro, and Cochrane Library were searched until 29 May 2019. Studies were eligible when the study outcomes encompassed intrinsic modifiable risk factors for lower extremity injury, an acute fatigue intervention, and included healthy athletes or physically active people. Intrinsic modifiable risk factors were identified through recent systematic reviews and meta-analyses, and the referenced original research papers were used to determine outcome measures associated with increased injury risk. RESULTS: Forty-three studies reported acute fatigue effects on modifiable risk factors, with eight studies matching all criteria for data-extraction. Acute fatigue can decrease single leg postural control, decrease ankle joint position sense, decrease isokinetic strength of hamstring and quadriceps muscles and can affect isokinetic hamstring:quadriceps ratios. CONCLUSION: Acute fatigue affects prospective intrinsic modifiable risk factors for lower extremity injury, indicating an altered injury risk profile for lateral ankle sprain, patellofemoral pain syndrome and hamstring injuries. Future research should allow for individual fatiguability as a relevant outcome, and merge insights from athlete-centred injury risk profiling and fatigue.


Asunto(s)
Traumatismos en Atletas , Fatiga , Traumatismos de la Pierna , Humanos , Extremidad Inferior/lesiones , Factores de Riesgo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...