Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Invest Radiol ; 50(4): 297-304, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25551821

RESUMEN

OBJECTIVES: The objective of this study was to investigate the feasibility and the accuracy of spectral computed tomography (spectral CT) to determine the tissue concentrations and localization of high-attenuation, iodine-based contrast agents in mice. Iodine tissue concentrations determined with spectral CT are compared with concentrations measured with single-photon emission computed tomography (SPECT) and inductively coupled plasma mass spectrometry (ICP-MS). MATERIALS AND METHODS: All animal procedures were performed according to the US National Institutes of Health principles of laboratory animal care and were approved by the ethical review committee of Maastricht, The Netherlands. Healthy Swiss mice (n = 4) were injected with an iodinated emulsion radiolabeled with indium as multimodal contrast agent for CT and SPECT. The CT and SPECT scans were acquired using a dedicated small-animal SPECT/CT system. Subsequently, scans were performed with a preclinical spectral CT scanner equipped with a photon-counting detector and 6 energy threshold levels. Quantitative data analysis of SPECT and spectral CT scans were obtained using 3-dimensional volumes-of-interest drawing methods. The ICP-MS on dissected organs was performed to determine iodine uptake per organ and was compared with the amounts determined from spectral CT and SPECT. RESULTS: Iodine concentrations obtained with image-processed spectral CT data correlated well with data obtained either with noninvasive SPECT imaging (slope = 0.96, r = 0.75) or with ICP-MS (slope = 0.99, r = 0.89) in tissue samples. CONCLUSIONS: This preclinical proof-of-concept study shows the in vivo quantification of iodine concentrations in tissues using spectral CT. Our multimodal imaging approach with spectral CT and SPECT using radiolabeled iodinated emulsions together with ICP-based quantification allows a direct comparison of all methods. Benchmarked against ICP-MS data, spectral CT in the present implementation shows a slight underestimation of organ iodine concentrations compared with SPECT but with a more narrow distribution. This slight deviation is most likely caused by experimental rather than technical issues.


Asunto(s)
Medios de Contraste/farmacocinética , Radioisótopos de Indio/farmacocinética , Fantasmas de Imagen , Tomografía Computarizada por Rayos X/métodos , Animales , Estudios de Factibilidad , Imagenología Tridimensional , Yodo , Ratones , Reproducibilidad de los Resultados , Espectrofotometría Atómica , Tomografía Computarizada de Emisión de Fotón Único
2.
J Mater Chem ; 22(43): 23071-23077, 2012 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-23185109

RESUMEN

Spectral CT is the newest advancement in CT imaging technology, which enhances traditional CT images with the capability to image and quantify certain elements based on their distinctive K-edge energies. K-edge imaging feature recognizes high accumulations of targeted elements and presents them as colorized voxels against the normal grayscale X-ray background offering promise to overcome the relatively low inherent contrast within soft tissue and distinguish the high attenuation of calcium from contrast enhanced targets. Towards this aim, second generation gold nanobeacons (GNB(2)), which incorporate at least five times more metal than the previous generation was developed. The particles were synthesized as lipid-encapsulated, vascularly constrained (>120 nm) nanoparticle incorporating tiny gold nanoparticles (2-4 nm) within a polysorbate core. The choice of core material dictated to achieve a higher metal loading. The particles were thoroughly characterized by physicochemical techniques. This study reports one of the earlier examples of spectral CT imaging with gold nanoparticles demonstrating the potential for targeted in vitro and in vivo imaging and eliminates calcium interference with CT. The use of statistical image reconstruction shows high SNR may allow dose reduction and/or faster scan times.

3.
ACS Nano ; 6(4): 3364-70, 2012 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-22385324

RESUMEN

We report a novel molecular imaging agent based on ytterbium designed for use with spectral "multicolor" computed tomography (CT). Spectral CT or multicolored CT provides all of the benefits of traditional CT, such as rapid tomographic X-ray imaging, but in addition, it simultaneously discriminates metal-rich contrast agents based on the element's unique X-ray K-edge energy signature. Our synthetic approach involved the use of organically soluble Yb(III) complex to produce nanocolloids of Yb of noncrystalline nature incorporating a high density of Yb (>500K/nanoparticle) into a stable metal particle. The resultant particles are constrained to vasculature (∼200 nm) and are highly selective for binding fibrin in the ruptured atherosclerotic plaque. Nanoparticles exhibited excellent signal sensitivity, and the spectral CT technique uniquely discriminates the K-edge signal (60 keV) of Yb from calcium (bones). Bioelimination and preliminary biodistribution reflected the overall safety and defined clearance of these particles in a rodent model.


Asunto(s)
Nanoestructuras , Tomografía Computarizada por Rayos X/métodos , Iterbio/química , Animales , Cápsulas , Coloides , Color , Interacciones Hidrofóbicas e Hidrofílicas , Ratones , Análisis Espectral , Iterbio/farmacocinética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA