Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Curr Opin Struct Biol ; 87: 102845, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38805950

RESUMEN

Microtubule-targeting agents (MTAs) have demonstrated remarkable efficacy as antitumor, antifungal, antiparasitic, and herbicidal agents, finding applications in the clinical, veterinary, and agrochemical industry. Recent advances in tubulin and microtubule structural biology have provided powerful tools that pave the way for the rational design of innovative small-molecule MTAs for future basic and applied life science applications. In this mini-review, we present the current status of the tubulin and microtubule structural biology field, the recent impact it had on the discovery and rational design of MTAs, and exciting avenues for future MTA research.

2.
J Biol Chem ; 300(6): 107363, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38735475

RESUMEN

Cryptophycins are microtubule-targeting agents (MTAs) that belong to the most potent antimitotic compounds known to date; however, their exact molecular mechanism of action remains unclear. Here, we present the 2.2 Å resolution X-ray crystal structure of a potent cryptophycin derivative bound to the αß-tubulin heterodimer. The structure addresses conformational issues present in a previous 3.3 Å resolution cryo-electron microscopy structure of cryptophycin-52 bound to the maytansine site of ß-tubulin. It further provides atomic details on interactions of cryptophycins, which had not been described previously, including ones that are in line with structure-activity relationship studies. Interestingly, we discovered a second cryptophycin-binding site that involves the T5-loop of ß-tubulin, a critical secondary structure element involved in the exchange of the guanosine nucleotide and in the formation of longitudinal tubulin contacts in microtubules. Cryptophycins are the first natural ligands found to bind to this new "ßT5-loop site" that bridges the maytansine and vinca sites. Our results offer unique avenues to rationally design novel MTAs with the capacity to modulate T5-loop dynamics and to simultaneously engage multiple ß-tubulin binding sites.

3.
Chem Sci ; 15(11): 3879-3892, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38487227

RESUMEN

Accelerated SuFEx Click Chemistry (ASCC) is a powerful method for coupling aryl and alkyl alcohols with SuFEx-compatible functional groups. With its hallmark favorable kinetics and exceptional product yields, ASCC streamlines the synthetic workflow, simplifies the purification process, and is ideally suited for discovering functional molecules. We showcase the versatility and practicality of the ASCC reaction as a tool for the late-stage derivatization of bioactive molecules and in the array synthesis of sulfonate-linked, high-potency, microtubule targeting agents (MTAs) that exhibit nanomolar anticancer activity against multidrug-resistant cancer cell lines. These findings underscore ASCC's promise as a robust platform for drug discovery.

4.
Materials (Basel) ; 16(13)2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37445049

RESUMEN

Fabric-reinforced cementitious matrix (FRCM) composites are currently considered a suitable solution for strengthening existing structures. Confinement applications are still being investigated, since experimental programs showed significant scatter in the results and theoretical models are struggling to become established as a consequence. The main aim of this study is the identification of potential sources of scatter in the confinement efficiency of FRCM wrappings, in defects such as fiber slip within the matrix or imperfect straightening of fibers, or premature failure of fibers once exposed after complete matrix cracking. A theoretical incremental approach is proposed to simulate such effects. The approach is incremental, but not iterative, so that no convergence is required and the incremental step size has an impact only on the smoothness of the nonlinear theoretical stress vs. strain curves of the FRCM confined material, among other simulation results. Theoretical results are compared to experimental outcomes of previous tests. The main source of variability can be identified in the cited defects, and the approach can be considered satisfactory to simulate the effects of defects and the high scatter found in experimental results; however, further uncertainties in the behavior of materials can be included in future refinements of this study.

5.
Sci Rep ; 13(1): 9015, 2023 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-37268753

RESUMEN

Currently available performance-based methodologies for assessing the fragility of structures subjected to tsunami neglect the effects of tsunami-induced vertical loads due to internal buoyancy. This paper adopts a generalized methodology for the performance assessment of structures that integrates the effects of buoyancy loads on interior slabs during a tsunami inundation. The methodology is applied in the fragility assessment of three case-study frames (low, mid and high-rise), representative of existing masonry-infilled reinforced concrete (RC) buildings typical of Mediterranean region. The paper shows the effect of modelling buoyancy loads on damage evolution and fragility curves associated with different structural damage mechanisms for existing RC frames with breakaway infill walls including consideration of blow-out slabs. The outcomes attest that buoyancy loads affect the damage assessment of buildings during a tsunami, especially in the case of mid and high-rise structures with blow-out slabs. The rate of occurrence of slabs uplift failure increases with the number of stories of the building, indicating the need to account for such damage mechanism when assessing the performance of structures. It is also found that buoyancy loads slightly affect the fragility curves associated to other structural damage mechanisms for existing RC buildings commonly monitored for fragility assessment.

6.
Materials (Basel) ; 16(7)2023 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-37049086

RESUMEN

In this work, cyclic-load tests on reduced-scale corroded reinforced-concrete hollow cross-section bridge piers have been experimentally performed and compared to the results of similar non-corroded piers. Piers were aged by using an imposed electric current and sodium chloride water solution before performing a mechanical cyclic-load test. The corrosion process has been detected with Non-Destructive Evaluation techniques by means of SonReb method (to check concrete degradation) and by measuring corrosion potential (to check steel degradation). The crack pattern was recorded by dedicated cameras, and an LVDT system was set up to monitor the cyclic-load test. Experimental results focused on degradation monitoring and mechanical performance under cyclic loads. During the cyclic-load mechanical test, the first cracks on the piers surface occurred diagonally, inclined at about 45°. This is the consequence of the failure mode change from ductile failure, as expected for slender designed piers, to brittle shear failure. The flexural failure occurred in the case of non-corroded piers. Presented tests can provide a useful contribution of experimental data to analyse the behaviour of corroded reinforced concrete hollow bridge piers, scarcely tested. In particular, the cyclic response can be a useful reference for the proposition/validation of nonlinear capacity models for the evaluation of the seismic capacity of corroded bridge piers.

7.
Elife ; 122023 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-36876916

RESUMEN

Paclitaxel (Taxol) is a taxane and a chemotherapeutic drug that stabilizes microtubules. While the interaction of paclitaxel with microtubules is well described, the lack of high-resolution structural information on a tubulin-taxane complex precludes a comprehensive description of the binding determinants that affect its mechanism of action. Here, we solved the crystal structure of baccatin III the core moiety of paclitaxel-tubulin complex at 1.9 Å resolution. Based on this information, we engineered taxanes with modified C13 side chains, solved their crystal structures in complex with tubulin, and analyzed their effects on microtubules (X-ray fiber diffraction), along with those of paclitaxel, docetaxel, and baccatin III. Further comparison of high-resolution structures and microtubules' diffractions with the apo forms and molecular dynamics approaches allowed us to understand the consequences of taxane binding to tubulin in solution and under assembled conditions. The results sheds light on three main mechanistic questions: (1) taxanes bind better to microtubules than to tubulin because tubulin assembly is linked to a ßM-loopconformational reorganization (otherwise occludes the access to the taxane site) and, bulky C13 side chains preferentially recognize the assembled conformational state; (2) the occupancy of the taxane site has no influence on the straightness of tubulin protofilaments and; (3) longitudinal expansion of the microtubule lattices arises from the accommodation of the taxane core within the site, a process that is no related to the microtubule stabilization (baccatin III is biochemically inactive). In conclusion, our combined experimental and computational approach allowed us to describe the tubulin-taxane interaction in atomic detail and assess the structural determinants for binding.


Asunto(s)
Taxoides , Tubulina (Proteína) , Tubulina (Proteína)/metabolismo , Taxoides/farmacología , Taxoides/química , Taxoides/metabolismo , Microtúbulos/metabolismo , Paclitaxel/farmacología , Paclitaxel/química
8.
Biomolecules ; 13(2)2023 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-36830654

RESUMEN

Microtubules are highly dynamic polymers of α,ß-tubulin dimers which play an essential role in numerous cellular processes such as cell proliferation and intracellular transport, making them an attractive target for cancer and neurodegeneration research. To date, a large number of known tubulin binders were derived from natural products, while only one was developed by rational structure-based drug design. Several of these tubulin binders show promising in vitro profiles while presenting unacceptable off-target effects when tested in patients. Therefore, there is a continuing demand for the discovery of safer and more efficient tubulin-targeting agents. Since tubulin structural data is readily available, the employment of computer-aided design techniques can be a key element to focus on the relevant chemical space and guide the design process. Due to the high diversity and quantity of structural data available, we compiled here a guide to the accessible tubulin-ligand structures. Furthermore, we review different ligand and structure-based methods recently used for the successful selection and design of new tubulin-targeting agents.


Asunto(s)
Antineoplásicos , Neoplasias , Humanos , Tubulina (Proteína) , Ligandos , Antineoplásicos/química , Microtúbulos , Neoplasias/tratamiento farmacológico
9.
Chemistry ; 29(5): e202300069, 2023 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-36692211

RESUMEN

Invited for the cover of this issue are the groups of Professors Passarella and Pieraccini at the University of Milan, in collaboration with some of the members of TubInTrain consortium. The image depicts work with the elements of nature, in particular the destabilising effect of maytansinol (the constellation) on microtubules (the trees). Read the full text of the article at 10.1002/chem.202203431.


Asunto(s)
Maitansina , Microtúbulos , Investigación , Grupo Social
10.
Chemistry ; 29(5): e202203431, 2023 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-36468686

RESUMEN

Maytansinoids are a successful class of natural and semisynthetic tubulin binders, known for their potent cytotoxic activity. Their wider application as cytotoxins and chemical probes to study tubulin dynamics has been held back by the complexity of natural product chemistry. Here we report the synthesis of long-chain derivatives and maytansinoid conjugates. We confirmed that bulky substituents do not impact their high activity or the scaffold's binding mode. These encouraging results open new avenues for the design of new maytansine-based probes.


Asunto(s)
Antineoplásicos , Maitansina , Tubulina (Proteína)/metabolismo , Antineoplásicos/metabolismo , Microtúbulos
11.
Structure ; 31(1): 88-99.e5, 2023 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-36462501

RESUMEN

Taxanes are microtubule-stabilizing agents used in the treatment of many solid tumors, but they often involve side effects affecting the peripheral nervous system. It has been proposed that this could be related to structural modifications on the filament upon drug binding. Alternatively, laulimalide and peloruside bind to a different site also inducing stabilization, but they have not been exploited in clinics. Here, we use a combination of the parental natural compounds and derived analogs to unravel the stabilization mechanism through this site. These drugs settle lateral interactions without engaging the M loop, which is part of the key and lock involved in the inter-protofilament contacts. Importantly, these drugs can modulate the angle between protofilaments, producing microtubules of different diameters. Among the compounds studied, we have found some showing low cytotoxicity and able to induce stabilization without compromising microtubule native structure. This opens the window of new applications for microtubule-stabilizing agents beyond cancer treatment.


Asunto(s)
Lactonas , Tubulina (Proteína) , Lactonas/farmacología , Tubulina (Proteína)/metabolismo , Excipientes/análisis , Excipientes/metabolismo , Sitios de Unión , Microtúbulos/metabolismo
12.
Eur J Med Chem ; 243: 114744, 2022 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-36242921

RESUMEN

Lymphomas are among the ten most common cancers, and, although progress has been achieved in increasing survival, there is still an unmet need for more effective therapeutic approaches, including better options for patients with refractory tumors that initially respond but then relapse. The lack of effective alternative treatment options highlights the need to develop new therapeutic strategies capable of improving survival prospects for lymphoma patients. Herein, we describe the identification and exploration of the SAR of a series of [1,2]oxazolo[5,4-e]isoindoles as potent small molecules that bind to the colchicine site of tubulin and that have promise for the treatment of refractory lymphomas. Exploration of the chemical space of this class of compounds at the pyrrole moiety and at the [1,2]oxazole ring highlighted two compounds bearing a 3,5-dimethoxybenzyl and a 3,4,5-trimethoxybenzyl group as potent candidates and showed that structural modifications at the isoxazole moiety are generally not favorable for activity. The two best candidates showed efficacy against different lymphoma histotypes and displayed 88 and 80% inhibition of colchicine binding fitting well into the colchicine pocket, as demonstrated by X-ray crystallography T2R-TTL-complexes, docking and thermodynamic analysis of the tubulin-colchicine complex structure. These results were confirmed by transcriptome data, thus indicating [1,2]oxazolo[5,4-e]isoindoles are promising candidates as antitubulin agents for the treatment of refractory lymphomas.


Asunto(s)
Antineoplásicos , Linfoma , Neoplasias , Humanos , Moduladores de Tubulina/farmacología , Moduladores de Tubulina/química , Tubulina (Proteína)/metabolismo , Colchicina/metabolismo , Isoindoles , Linfoma/tratamiento farmacológico , Sitios de Unión , Antineoplásicos/química , Línea Celular Tumoral , Relación Estructura-Actividad
13.
Eur J Med Chem ; 241: 114614, 2022 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-35939994

RESUMEN

Microtubules (MTs) are dynamic filaments of the cytoskeleton, which are formed by the polymerization of their building block tubulin. Perturbation of MT dynamics by MT-targeting agents (MTAs) leads to cell cycle arrest or cell death, a strategy that is pursued in chemotherapy. We recently performed a combined computational and crystallographic fragment screening approach and identified several tubulin-binding fragments. Here, we sought to capitalize on this study with the aim to demonstrate that low affinity tubulin-binding fragments can indeed be used as valuable starting points for the development of active, lead-like antitubulin small molecules. To this end, we report on a new, rationally designed series of 2-aminobenzimidazole derivatives that destabilize MTs by binding tubulin at the colchicine-binding site (CBS). We applied a fragment growing strategy by combining X-ray crystallography and computer-aided drug design. Preliminary structure-activity-relationship studies afforded compound 18 that inhibits HeLa cell viability with a submicromolar activity (IC50 of 0.9 µM). X-ray crystallography confirmed the compound pose in the CBS, while immunostaining experiments suggested a molecular mechanism of action alike classical CBS ligands with antimitotic and antitumor activity associated with MTs destabilization. This promising outcome underpins that our previously performed combined computational and crystallographic fragment screening approach provides promising starting points for developing new MTAs binding to the CBS of tubulin and, eventually, to further tubulin pockets.


Asunto(s)
Antineoplásicos , Colchicina , Antineoplásicos/química , Sitios de Unión , Proliferación Celular , Colchicina/metabolismo , Células HeLa , Humanos , Microtúbulos/metabolismo , Relación Estructura-Actividad , Tubulina (Proteína)/metabolismo , Moduladores de Tubulina/química
14.
J Inorg Biochem ; 236: 111945, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35952593

RESUMEN

α-synuclein protein aggregates are the major constituent of Lewy bodies, which is a main pathogenic hallmark of Parkinson's disease. Both lipid membranes and Cu2+ ions can bind to α-synuclein and modulate its aggregation propensity and toxicity. However, the synergistic effect of copper ions and lipid membranes on α-synuclein remains to be explored. Here, we investigate how Cu2+ and α-synuclein simultaneously influence the lipidic structure of lipidic cubic phase(LCP) matrix by using small-angle X-ray scattering. α-Syn proteins destabilize the cubic-Pn3m phase of LCP that can be further recovered after the addition of Cu2 ions even at a low stoichiometric ratio. By using circular dichroism and nuclear magnetic resonance, we also study how lipid membranes and Cu2+ ions impact the secondary structures of α-synuclein at an atomic level. Although the secondary structure of α-synuclein with lipid membranes is not significantly changed to a large extent in the presence of Cu2+ ions, lipid membranes promote the interaction between α-synuclein C-terminus and Cu2+ ions. The modulation of Cu2+ ions and lipid membranes on α-synuclein dynamics and structure may play an important role in the molecular pathogenesis of Parkinson's disease.


Asunto(s)
Enfermedad de Parkinson , alfa-Sinucleína , Cobre/química , Humanos , Iones , Lípidos , Enfermedad de Parkinson/metabolismo , Agregado de Proteínas , alfa-Sinucleína/metabolismo
15.
Angew Chem Int Ed Engl ; 61(25): e202204052, 2022 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-35404502

RESUMEN

In this study, we capitalized on our previously performed crystallographic fragment screen and developed the antitubulin small molecule Todalam with only two rounds of straightforward chemical synthesis. Todalam binds to a novel tubulin site, disrupts microtubule networks in cells, arrests cells in G2/M, induces cell death, and synergizes with vinblastine. The compound destabilizes microtubules by acting as a molecular plug that sterically inhibits the curved-to-straight conformational switch in the α-tubulin subunit, and by sequestering tubulin dimers into assembly incompetent oligomers. Our results describe for the first time the generation of a fully rationally designed small molecule tubulin inhibitor from a fragment, which displays a unique molecular mechanism of action. They thus demonstrate the usefulness of tubulin-binding fragments as valuable starting points for innovative antitubulin drug and chemical probe discovery campaigns.


Asunto(s)
Moduladores de Tubulina , Tubulina (Proteína) , Muerte Celular , Microtúbulos/metabolismo , Unión Proteica , Tubulina (Proteína)/química , Moduladores de Tubulina/química
16.
Methods Mol Biol ; 2430: 349-374, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35476344

RESUMEN

Since the first moderate resolution, structural description of Taxol bound to tubulin by electron crystallography in 1998, several tubulin crystal systems have been developed and optimized for the high-resolution analysis of tubulin-ligand complexes by X-ray crystallography. Here we describe three tubulin crystal systems that have allowed investigating the molecular mechanisms of action of a large number of diverse anti-tubulin agents.


Asunto(s)
Citoesqueleto , Tubulina (Proteína) , Cristalización , Cristalografía por Rayos X , Citoesqueleto/metabolismo , Ligandos , Tubulina (Proteína)/metabolismo
17.
Chemistry ; 28(2): e202103520, 2022 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-34788896

RESUMEN

Maytansinol is a valuable precursor for the preparation of maytansine derivatives (known as maytansinoids). Inspired by the intriguing structure of the macrocycle and the success in targeted cancer therapy of the derivatives, we explored the maytansinol acylation reaction. As a result, we were able to obtain a series of derivatives with novel modifications of the maytansine scaffold. We characterized these molecules by docking studies, by a comprehensive biochemical evaluation, and by determination of their crystal structures in complex with tubulin. The results shed further light on the intriguing chemical behavior of maytansinoids and confirm the relevance of this peculiar scaffold in the scenario of tubulin binders.


Asunto(s)
Maitansina , Neoplasias , Humanos , Maitansina/análogos & derivados , Microtúbulos , Tubulina (Proteína) , Moduladores de Tubulina
18.
Polymers (Basel) ; 13(17)2021 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-34503002

RESUMEN

Recent seismic events have demonstrated that the high vulnerability of existing reinforced concrete (RC) buildings is mainly due to a lack of proper seismic detailing and the employment of poor-quality concrete. The reconstruction process following the 2009 L'Aquila earthquake highlighted that strengthening these buildings using solutions based on fiber-reinforced polymers (FRPs) can be both efficient and cost-effective. Indeed, their light weight, ease of installation, and the availability of specific guidelines and standards strongly supported their use in design practices, where they were the strengthening technique employed the most. This paper analyses and discusses the data on the actual cost and effectiveness of FRP solutions for seismic strengthening of existing RC buildings. To this end, the large database relating to the L'Aquila reconstruction process was used to select 130 RC buildings strengthened with FRP systems or FRPs combined with other techniques. Details of direct costs, including at the member level, and the types and percentages of strengthened members are analysed for both local and global strategies. This study thus provides readers with valuable data for use in cost-benefit analyses of FRP systems schemes to mitigate seismic risk at large-scale.

19.
Mol Cancer Ther ; 20(10): 1846-1857, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34315764

RESUMEN

PTC596 is an investigational small-molecule tubulin-binding agent. Unlike other tubulin-binding agents, PTC596 is orally bioavailable and is not a P-glycoprotein substrate. So as to characterize PTC596 to position the molecule for optimal clinical development, the interactions of PTC596 with tubulin using crystallography, its spectrum of preclinical in vitro anticancer activity, and its pharmacokinetic-pharmacodynamic relationship were investigated for efficacy in multiple preclinical mouse models of leiomyosarcomas and glioblastoma. Using X-ray crystallography, it was determined that PTC596 binds to the colchicine site of tubulin with unique key interactions. PTC596 exhibited broad-spectrum anticancer activity. PTC596 showed efficacy as monotherapy and additive or synergistic efficacy in combinations in mouse models of leiomyosarcomas and glioblastoma. PTC596 demonstrated efficacy in an orthotopic model of glioblastoma under conditions where temozolomide was inactive. In a first-in-human phase I clinical trial in patients with cancer, PTC596 monotherapy drug exposures were compared with those predicted to be efficacious based on mouse models. PTC596 is currently being tested in combination with dacarbazine in a clinical trial in adults with leiomyosarcoma and in combination with radiation in a clinical trial in children with diffuse intrinsic pontine glioma.


Asunto(s)
Bencimidazoles/farmacología , Glioblastoma/tratamiento farmacológico , Leiomiosarcoma/tratamiento farmacológico , Pirazinas/farmacología , Moduladores de Tubulina/farmacología , Adulto , Anciano , Anciano de 80 o más Años , Animales , Apoptosis , Bencimidazoles/farmacocinética , Proliferación Celular , Femenino , Glioblastoma/patología , Humanos , Leiomiosarcoma/patología , Masculino , Dosis Máxima Tolerada , Ratones , Ratones Desnudos , Persona de Mediana Edad , Pronóstico , Pirazinas/farmacocinética , Distribución Tisular , Moduladores de Tubulina/farmacocinética , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
20.
ChemMedChem ; 16(18): 2882-2894, 2021 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-34159741

RESUMEN

Since the revelation of noscapine's weak anti-mitotic activity, extensive research has been conducted over the past two decades, with the goal of discovering noscapine derivatives with improved potency. To date, noscapine has been explored at the 1, 7, 6', and 9'-positions, though the 1,3-benzodioxole motif in the noscapine scaffold that remains unexplored. The present investigation describes the design, synthesis and pharmacological evaluation of noscapine analogues consisting of modifications to the 1,3-benzodioxole moiety. This includes expansion of the dioxolane ring and inclusion of metabolically robust deuterium and fluorine atoms. Favourable structural modifications were subsequently incorporated into multi-functionalised noscapine derivatives that also possessed modifications previously shown to promote anti-proliferative activity in the 1-, 6'- and 9'-positions. Our research efforts afforded the deuterated noscapine derivative 14 e and the dioxino-containing analogue 20 as potent cytotoxic agents with EC50 values of 1.50 and 0.73 µM, respectively, against breast cancer (MCF-7) cells. Compound 20 also exhibited EC50 values of <2 µM against melanoma, non-small cell lung carcinoma, and cancers of the brain, kidney and breast in an NCI screen. Furthermore, compounds 14 e and 20 inhibit tubulin polymerisation and are not vulnerable to the overexpression of resistance conferring P-gp efflux pumps in drug-resistant breast cancer cells (NCIADR/RES ). We also conducted X-ray crystallography studies that yielded the high-resolution structure of 14 e bound to tubulin. Our structural analysis revealed the key interactions between this noscapinoid and tubulin and will assist with the future design of noscapine derivatives with improved properties.


Asunto(s)
Antineoplásicos/farmacología , Dioxoles/farmacología , Moduladores de Tubulina/farmacología , Tubulina (Proteína)/metabolismo , Antineoplásicos/síntesis química , Antineoplásicos/química , Proliferación Celular/efectos de los fármacos , Dioxoles/síntesis química , Dioxoles/química , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Estructura Molecular , Polimerizacion/efectos de los fármacos , Relación Estructura-Actividad , Moduladores de Tubulina/síntesis química , Moduladores de Tubulina/química , Células Tumorales Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...