Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Immunol ; 15: 1342404, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38469298

RESUMEN

Background: Metabolic dysfunction-associated steatotic liver disease (MASLD), previously non-alcoholic fatty liver disease (NAFLD), is a leading cause of chronic liver disease worldwide. In 20%-30% of MASLD patients, the disease progresses to metabolic dysfunction-associated steatohepatitis (MASH, previously NASH) which can lead to fibrosis/cirrhosis, liver failure as well as hepatocellular carcinoma (HCC). Here we investigated the role of histidine-rich glycoprotein (HRG), a plasma protein produced by hepatocytes, in MASLD/MASH progression and HCC development. Methods: The role of HRG was investigated by morphological, cellular, and molecular biology approaches in (a) HRG knock-out mice (HRG-/- mice) fed on a CDAA dietary protocol or a MASH related diethyl-nitrosamine/CDAA protocol of hepatocarcinogenesis, (b) THP1 monocytic cells treated with purified HRG, and (c) well-characterized cohorts of MASLD patients with or without HCC. Results: In non-neoplastic settings, murine and clinical data indicate that HRG increases significantly in parallel with disease progression. In particular, in MASLD/MASH patients, higher levels of HRG plasma levels were detected in subjects with extensive fibrosis/cirrhosis. When submitted to the pro-carcinogenic protocol, HRG-/- mice showed a significant decrease in the volume and number of HCC nodules in relation to decreased infiltration of macrophages producing pro-inflammatory mediators, including IL-1ß, IL-6, IL-12, IL-10, and VEGF as well as impaired angiogenesis. The histopathological analysis (H-score) of MASH-related HCC indicate that the higher HRG positivity in peritumoral tissue significantly correlates with a lower overall patient survival and an increased recurrence. Moreover, a significant increase in HRG plasma levels was detected in cirrhotic (F4) patients and in patients carrying HCC vs. F0/F1 patients. Conclusion: Murine and clinical data indicate that HRG plays a significant role in MASLD/MASH progression to HCC by supporting a specific population of tumor-associated macrophages with pro-inflammatory response and pro-angiogenetic capabilities which critically support cancer cell survival. Furthermore, our data suggest HRG as a possible prognostic predictor in HCC patients with MASLD/MASH-related HCCs.


Asunto(s)
Acetamidas , Carcinoma Hepatocelular , Neoplasias Hepáticas , Enfermedades Metabólicas , Enfermedad del Hígado Graso no Alcohólico , Proteínas , Humanos , Animales , Ratones , Carcinoma Hepatocelular/etiología , Neoplasias Hepáticas/etiología , Carcinogénesis , Cirrosis Hepática/etiología , Progresión de la Enfermedad
2.
Mol Metab ; 81: 101889, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38307387

RESUMEN

OBJECTIVE: The serine protease inhibitor SerpinB3 has been described as critical mediator of liver fibrosis and it has been recently proposed as an additional hepatokine involved in NASH development and insulin resistance. Protease Activated Receptor 2 has been identified as a novel regulator of hepatic metabolism. A targeted therapeutic strategy for NASH has been investigated, using 1-Piperidine Propionic Acid (1-PPA), since this compound has been recently proposed as both Protease Activated Receptor 2 and SerpinB3 inhibitor. METHODS: The effect of SerpinB3 on inflammation and fibrosis genes was assessed in human macrophage and stellate cell lines. Transgenic mice, either overexpressing SerpinB3 or carrying Serpinb3 deletion and their relative wild type strains, were used in experimental NASH models. Subgroups of SerpinB3 transgenic mice and their controls were also injected with 1-PPA to assess the efficacy of this compound in NASH inhibition. RESULTS: 1-PPA did not present significant cell and organ toxicity and was able to inhibit SerpinB3 and PAR2 in a dose-dependent manner. This effect was associated to a parallel reduction of the synthesis of the molecules induced by endogenous SerpinB3 or by its paracrine effects both in vitro and in vivo, leading to inhibition of lipid accumulation, inflammation and fibrosis in experimental NASH. At mechanistic level, the antiprotease activity of SerpinB3 was found essential for PAR2 activation, determining upregulation of the CCAAT Enhancer Binding Protein beta (C/EBP-ß), another pivotal regulator of metabolism, inflammation and fibrosis, which in turn determined SerpinB3 synthesis. CONCLUSIONS: 1-PPA treatment was able to inhibit the PAR2 - C/EBP-ß - SerpinB3 axis and to protect from NASH development and progression, supporting the potential use of a similar approach for a targeted therapy of NASH.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Ratones , Animales , Humanos , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Receptor PAR-2 , Proteína beta Potenciadora de Unión a CCAAT , Cirrosis Hepática/tratamiento farmacológico , Ratones Transgénicos , Inflamación
3.
Biology (Basel) ; 12(6)2023 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-37372056

RESUMEN

Abnormal activation of the Wnt-ß-catenin signaling cascade is involved in tumor growth and dissemination. SerpinB3 has been shown to induce ß-catenin, and both molecules are overexpressed in tumors, particularly in those with poor prognoses. The aim of this study was to evaluate the ability of SerpinB3 to modulate the Wnt pathway in liver cancer and in monocytic cells, the main type of inflammatory cells in the tumor microenvironment. The Wnt cascade, Wnt co-receptors, and low-density lipoprotein receptor-related protein (LRP) members were analyzed in different cell lines and human monocytes in the presence or absence of SerpinB3. The Wnt-ß-catenin axis was also evaluated in liver tumors induced in mice with different extents of SeprinB3 expression. In monocytic cells, SerpinB3 induced a significant upregulation of Wnt-1/7, nuclear ß-catenin, and c-Myc, which are associated with increased cell lifespan and proliferation. In liver tumors in mice, the expression of ß-catenin was significantly correlated with the presence of SerpinB3. In hepatoma cells, Wnt co-receptors LRP-5/6 and LRP-1, implicated in cell survival and invasiveness, were upregulated by SerpinB3. The LRP pan-inhibitor RAP not only induced a decrease in LRP expression, but also a dose-dependent reduction in SerpinB3-induced invasiveness. In conclusion, SerpinB3 determines the activation of the Wnt canonical pathway and cell invasiveness through the upregulation of LRP family members.

4.
Antioxidants (Basel) ; 11(7)2022 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-35883770

RESUMEN

During chronic liver disease (CLD) progression, hepatic myofibroblasts (MFs) represent a unique cellular phenotype that plays a critical role in driving liver fibrogenesis and then fibrosis. Although they could originate from different cell types, MFs exhibit a rather common pattern of pro-fibrogenic phenotypic responses, which are mostly elicited or sustained both by oxidative stress and reactive oxygen species (ROS) and several mediators (including growth factors, cytokines, chemokines, and others) that often operate through the up-regulation of the intracellular generation of ROS. In the present review, we will offer an overview of the role of MFs in the fibrogenic progression of CLD from different etiologies by focusing our attention on the direct or indirect role of ROS and, more generally, oxidative stress in regulating MF-related phenotypic responses. Moreover, this review has the purpose of illustrating the real complexity of the ROS modulation during CLD progression. The reader will have to keep in mind that a number of issues are able to affect the behavior of the cells involved: a) the different concentrations of reactive species, b) the intrinsic state of the target cells, as well as c) the presence of different growth factors, cytokines, and other mediators in the extracellular microenvironment or of other cellular sources of ROS.

5.
Front Immunol ; 13: 910526, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35874657

RESUMEN

Non-alcoholic fatty liver disease (NAFLD) is becoming the most common chronic liver disease worldwide. In 20-30% of patients, NAFLD can progress into non-alcoholic steatohepatitis (NASH), eventually leading to fibrosis, cirrhosis and hepatocellular carcinoma development. SerpinB3 (SB3), a hypoxia-inducible factor-2α dependent cysteine protease inhibitor, is up-regulated in hepatocytes during progressive NAFLD and proposed to contribute to disease progression. In this study we investigated the pro-inflammatory role of SB3 by employing phorbol-myristate acetate-differentiated human THP-1 macrophages exposed in vitro to human recombinant SB3 (hrSB3) along with mice overexpressing SB3 in hepatocytes (TG/SB3) or knockout for SB3 (KO/SB3) in which NASH was induced by feeding methionine/choline deficient (MCD) or a choline-deficient, L-amino acid defined (CDAA) diets. In vivo experiments showed that the induction of NASH in TG/SB3 mice was characterized by an impressive increase of liver infiltrating macrophages that formed crown-like aggregates and by an up-regulation of hepatic transcript levels of pro-inflammatory cytokines. All these parameters and the extent of liver damage were significantly blunted in KO/SB3 mice. In vitro experiments confirmed that hrSB3 stimulated macrophage production of M1-cytokines such as TNFα and IL-1ß and reactive oxygen species along with that of TGFß and VEGF through the activation of the NF-kB transcription factor. The opposite changes in liver macrophage activation observed in TG/SB3 or KO/SB3 mice with NASH were associated with a parallel modulation in the expression of triggering receptor expressed on myeloid cells-2 (TREM2), CD9 and galectin-3 markers, recently detected in NASH-associated macrophages. From these results we propose that SB3, produced by activated/injured hepatocytes, may operate as a pro-inflammatory mediator in NASH contributing to the disease progression.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Animales , Antígenos de Neoplasias , Colina , Citocinas , Progresión de la Enfermedad , Humanos , Mediadores de Inflamación , Glicoproteínas de Membrana , Ratones , Ratones Noqueados , Enfermedad del Hígado Graso no Alcohólico/patología , Receptores Inmunológicos , Serpinas , Células THP-1
6.
Cells ; 10(7)2021 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-34359934

RESUMEN

Liver fibrosis is a potentially reversible pathophysiological event, leading to excess deposition of extracellular matrix (ECM) components and taking place as the net result of liver fibrogenesis, a dynamic and highly integrated process occurring during chronic liver injury of any etiology. Liver fibrogenesis and fibrosis, together with chronic inflammatory response, are primarily involved in the progression of chronic liver diseases (CLD). As is well known, a major role in fibrogenesis and fibrosis is played by activated myofibroblasts (MFs), as well as by macrophages and other hepatic cell populations involved in CLD progression. In the present review, we will focus the attention on the emerging pathogenic role of hypoxia, hypoxia-inducible factors (HIFs) and related mediators in the fibrogenic progression of CLD.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Hipoxia/complicaciones , Cirrosis Hepática/complicaciones , Animales , Humanos , Hígado/metabolismo , Hígado/patología , Cirrosis Hepática/tratamiento farmacológico , Cirrosis Hepática/patología , Neovascularización Patológica , Transducción de Señal
7.
Arch Biochem Biophys ; 689: 108445, 2020 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-32524998

RESUMEN

Liver fibrogenesis is defined as a dynamic and highly integrated process occurring during chronic injury to liver parenchyma that can result in excess deposition of extracellular matrix (ECM) components (i.e., liver fibrosis). Liver fibrogenesis, together with chronic inflammatory response, is then primarily involved in the progression of chronic liver diseases (CLD) irrespective of the specific etiology. In the present review we will first offer a synthetic and updated overview of major basic concepts in relation to the role of myofibroblasts (MFs), macrophages and other hepatic cell populations involved in CLD to then offer an overview of established and emerging issues and mechanisms that have been proposed to favor and/or promote CLD progression. A special focus will be dedicated to selected issues that include emerging features in the field of cholangiopathies, the emerging role of genetic and epigenetic factors as well as of hypoxia, hypoxia-inducible factors (HIFs) and related mediators.


Asunto(s)
Cirrosis Hepática/patología , Hígado/patología , Animales , Enfermedad Crónica , Progresión de la Enfermedad , Epigénesis Genética , Humanos , Inflamación/genética , Inflamación/patología , Hígado/metabolismo , Cirrosis Hepática/genética , Macrófagos/metabolismo , Macrófagos/patología , Miofibroblastos/metabolismo , Miofibroblastos/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...