Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Microorganisms ; 12(4)2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38674674

RESUMEN

Controlled human infection models are important tools for the evaluation of vaccines against diseases where an appropriate correlate of protection has not been identified. Enterotoxigenic Escherichia coli (ETEC) strain LSN03-016011/A (LSN03) is an LT enterotoxin and CS17-expressing ETEC strain useful for evaluating vaccine candidates targeting LT-expressing strains. We sought to confirm the ability of the LSN03 strain to induce moderate-to-severe diarrhea in a healthy American adult population, as well as the impact of immunization with an investigational cholera/ETEC vaccine (VLA-1701) on disease outcomes. A randomized, double-blinded pilot study was conducted in which participants received two doses of VLA1701 or placebo orally, one week apart; eight days after the second vaccination, 30 participants (15 vaccinees and 15 placebo recipients) were challenged with approximately 5 × 109 colony-forming units of LSN03. The vaccine was well tolerated, with no significant adverse events. The vaccine also induced serum IgA and IgG responses to LT. After challenge, 11 of the placebo recipients (73.3%; 95%CI: 48.0-89.1) and 7 of the VLA1701 recipients (46.7%; 95%CI: 24.8-68.8) had moderate-to-severe diarrhea (p = 0.26), while 14 placebo recipients (93%) and 8 vaccine recipients (53.3%) experienced diarrhea of any severity, resulting in a protective efficacy of 42.9% (p = 0.035). In addition, the vaccine also appeared to provide protection against more severe diarrhea (p = 0.054). Vaccinees also tended to shed lower levels of the LSN03 challenge strain compared to placebo recipients (p = 0.056). In addition, the disease severity score was lower for the vaccinees than for the placebo recipients (p = 0.046). In summary, the LSN03 ETEC challenge strain induced moderate-to-severe diarrhea in 73.3% of placebo recipients. VLA1701 vaccination ameliorated disease severity, as observed by several parameters, including the percentage of participants experiencing diarrhea, as well as stool frequency and ETEC severity scores. These data highlight the potential value of LSN03 as a suitable ETEC challenge strain to evaluate LT-based vaccine targets (NCT03576183).

2.
Influenza Other Respir Viruses ; 17(9): e13189, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37693773

RESUMEN

Background: Uncertainty about risk of illness and the value of influenza vaccines negatively affects vaccine uptake among persons targeted for influenza vaccination. Methods: During 2016-2019, we followed a cohort of healthcare personnel (HCP) targeted for free-of-charge influenza vaccination in five Lima hospitals to quantify risk of influenza, workplace presenteeism (coming to work despite illness), and absenteeism (taking time off from work because of illness). The HCP who developed acute respiratory illnesses (ARI) (≥1 of acute cough, runny nose, body aches, or feverishness) were tested for influenza using reverse-transcription polymerase chain reaction (rt-PCR). Findings: The cohort (2968 HCP) contributed 950,888 person-days. Only 36 (6%) of 605 HCP who participated every year were vaccinated. The HCP had 5750 ARI and 147 rt-PCR-confirmed influenza illnesses. The weighted incidence of laboratory-confirmed influenza was 10.0/100 person-years; 37% used antibiotics, and 0.7% used antivirals to treat these illnesses. The HCP with laboratory-confirmed influenza were present at work while ill for a cumulative 1187 hours. Interpretation: HCP were frequently ill and often worked rather than stayed at home while ill. Our findings suggest the need for continuing medical education about the risk of influenza and benefits of vaccination and stay-at-home-while-ill policies.


Asunto(s)
Vacunas contra la Influenza , Gripe Humana , Virosis , Humanos , Gripe Humana/tratamiento farmacológico , Gripe Humana/epidemiología , Gripe Humana/prevención & control , Antivirales/uso terapéutico , Estudios Prospectivos , Antibacterianos , Atención a la Salud
3.
Microorganisms ; 11(9)2023 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-37764065

RESUMEN

Enterotoxigenic Escherichia coli (ETEC) are common causes of infectious diarrhea among young children of low-and middle-income countries (LMICs) and travelers to these regions. Despite their significant contributions to the morbidity and mortality associated with childhood and traveler's diarrhea, no licensed vaccines are available. Current vaccine strategies may benefit from the inclusion of additional conserved antigens, which may contribute to broader coverage and enhanced efficacy, given their key roles in facilitating intestinal colonization and effective enterotoxin delivery. EatA and EtpA are widely conserved in diverse populations of ETEC, but their immunogenicity has only been studied in controlled human infection models and a population of children in Bangladesh. Here, we compared serologic responses to EatA, EtpA and heat-labile toxin in populations from endemic regions including Haitian children and subjects residing in Egypt, Cameroon, and Peru to US children and adults where ETEC infections are sporadic. We observed elevated IgG and IgA responses in individuals from endemic regions to each of the antigens studied. In a cohort of Haitian children, we observed increased immune responses following exposure to each of the profiled antigens. These findings reflect the wide distribution of ETEC infections across multiple endemic regions and support further evaluation of EatA and EtpA as candidate ETEC vaccine antigens.

4.
BMJ Open ; 13(2): e067840, 2023 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-36806137

RESUMEN

OBJECTIVES: We evaluated the performance of commonly used sepsis screening tools across prospective sepsis cohorts in the USA, Cambodia and Ghana. DESIGN: Prospective cohort studies. SETTING AND PARTICIPANTS: From 2014 to 2021, participants with two or more SIRS (Systemic Inflammatory Response Syndrome) criteria and suspected infection were enrolled in emergency departments and medical wards at hospitals in Cambodia and Ghana and hospitalised participants with suspected infection were enrolled in the USA. Cox proportional hazards regression was performed, and Harrell's C-statistic calculated to determine 28-day mortality prediction performance of the quick Sequential Organ Failure Assessment (qSOFA) score ≥2, SIRS score ≥3, National Early Warning Score (NEWS) ≥5, Modified Early Warning Score (MEWS) ≥5 or Universal Vital Assessment (UVA) score ≥2. Screening tools were compared with baseline risk (age and sex) with the Wald test. RESULTS: The cohorts included 567 participants (42.9% women) including 187 participants from Kumasi, Ghana, 200 participants from Takeo, Cambodia and 180 participants from Durham, North Carolina in the USA. The pooled mortality was 16.4% at 28 days. The mortality prediction accuracy increased from baseline risk with the MEWS (C-statistic: 0.63, 95% CI 0.58 to 0.68; p=0.002), NEWS (C-statistic: 0.68; 95% CI 0.64 to 0.73; p<0.001), qSOFA (C-statistic: 0.70, 95% CI 0.64 to 0.75; p<0.001), UVA score (C-statistic: 0.73, 95% CI 0.69 to 0.78; p<0.001), but not with SIRS (0.60; 95% CI 0.54 to 0.65; p=0.13). Within individual cohorts, only the UVA score in Ghana performed better than baseline risk (C-statistic: 0.77; 95% CI 0.71 to 0.83; p<0.001). CONCLUSIONS: Among the cohorts, MEWS, NEWS, qSOFA and UVA scores performed better than baseline risk, largely driven by accuracy improvements in Ghana, while SIRS scores did not improve prognostication accuracy. Prognostication scores should be validated within the target population prior to clinical use.


Asunto(s)
Sepsis , Adulto , Femenino , Humanos , Masculino , Estudios Prospectivos , Sepsis/diagnóstico , Síndrome de Respuesta Inflamatoria Sistémica/diagnóstico , Cambodia , Estudios de Cohortes
5.
Emerg Infect Dis ; 28(13): S238-S243, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36502444

RESUMEN

In February 2021, Peru launched a COVID-19 vaccination campaign among healthcare personnel using an inactivated whole-virus vaccine. The manufacturer recommended 2 vaccine doses 21 days apart. We evaluated vaccine effectiveness among an existing multiyear influenza vaccine cohort at 2 hospitals in Lima. We analyzed data on 290 participants followed during February-May 2021. Participants completed a baseline questionnaire and provided weekly self-collected nasal swab samples; samples were tested by real-time reverse transcription PCR. Median participant follow-up was 2 (range 1-11) weeks. We performed multivariable logistic regression and adjusted for preselected characteristics. During the study, 25 (9%) participants tested SARS-CoV-2-positive. We estimated adjusted vaccine effectiveness at 95% (95% CI 70%-99%) among fully vaccinated participants and 100% (95% CI 88%-100%) among partially vaccinated participants. These data can inform the use and acceptance of inactivated whole-virus vaccine and support vaccination efforts in the region.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Humanos , COVID-19/epidemiología , COVID-19/prevención & control , SARS-CoV-2 , Personal de Salud , Vacunación , Atención a la Salud
6.
Lancet Infect Dis ; 22(9): 1356-1364, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35716700

RESUMEN

BACKGROUND: Acute febrile illness is a common presentation for patients at hospitals globally. Assays that can diagnose a variety of common pathogens in blood could help to establish a diagnosis for targeted disease management. We aimed to evaluate the performance of the BioFire Global Fever Panel (GF Panel), a multiplex nucleic acid amplification test performed on whole blood specimens run on the BioFire FilmArray System, in the diagnosis of several pathogens that cause acute febrile illness. METHODS: We did a prospective, multicentre, cross-sectional diagnostic accuracy study to evaluate the GF Panel. Consenting adults and children older than 6 months presenting with fever in the previous 2 days were enrolled consecutively in sub-Saharan Africa (Ghana, Kenya, Tanzania, Uganda), southeast Asia (Cambodia, Thailand), central and South America (Honduras, Peru), and the USA (Washington, DC; St Louis, MO). We assessed the performance of six analytes (chikungunya virus, dengue virus [serotypes 1-4], Leptospira spp, Plasmodium spp, Plasmodium falciparum, and Plasmodium vivax or Plasmodium ovale) on the GF Panel. The performance of the GF Panel was assessed using comparator PCR assays with different primers followed by bidirectional sequencing on nucleic acid extracts from the same specimen. We calculated the positive percent agreement and negative percent agreement of the GF Panel with respect to the comparator assays. This study is registered with ClinicalTrials.gov, NCT02968355. FINDINGS: From March 26, 2018, to Sept 30, 2019, 1965 participants were enrolled at ten sites worldwide. Of the 1875 participants with analysable results, 980 (52·3%) were female and the median age was 22 years (range 0-100). At least one analyte was detected in 657 (35·0%) of 1875 specimens. The GF Panel had a positive percent agreement for the six analytes evaluated as follows: chikungunya virus 100% (95% CI 86·3-100), dengue virus 94·0% (90·6-96·5), Leptospira spp 93·8% (69·8-99·8), Plasmodium spp 98·3% (96·3-99·4), P falciparum 92·7% (88·8-95·6), and P vivax or P ovale 92·7% (86·7-96·6). The GF Panel had a negative percent agreement equal to or greater than 99·2% (98·6-99·6) for all analytes. INTERPRETATION: This 1 h sample-to-answer, molecular device can detect common causative agents of acute febrile illness with excellent positive percent agreement and negative percent agreement directly in whole blood. The targets of the assay are prevalent in tropical and subtropical regions globally, and the assay could help to provide both public health surveillance and individual diagnoses. FUNDING: BioFire Defense, Joint Project Manager for Medical Countermeasure Systems and US Army Medical Materiel Development Activity, and National Institute of Allergy and Infectious Diseases.


Asunto(s)
Fiebre Chikungunya , Virus Chikungunya , Dengue , Leptospirosis , Malaria , Plasmodium , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Niño , Preescolar , Estudios Transversales , Femenino , Fiebre , Humanos , Lactante , Recién Nacido , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Adulto Joven
7.
Vaccine ; 39(39): 5548-5556, 2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34419306

RESUMEN

INTRODUCTION: Enterotoxigenic Escherichia coli (ETEC) is a common cause of infectious diarrhoea and a leading cause of morbidity and mortality in children living in resource-limited settings. It is also the leading cause of travellers' diarrhoea among civilian and military travellers. Its dual importance in global public health and travel medicine highlights the need for an effective vaccine. ETEC express colonization factors (CFs) that mediate adherence to the small intestine. An epidemiologically prevalent CF is coli surface antigen 6 (CS6). We assessed the safety and immunogenicity of a CS6-targeted candidate vaccine, CssBA, co-administered intramuscularly with the double-mutant heat-labile enterotoxin, dmLT [LT(R192G/L211A)]. METHODS: This was an open-label trial. Fifty subjects received three intramuscular injections (Days 1, 22 and 43) of CssBA alone (5 µg), dmLT alone (0.1 µg) or CssBA (5, 15, 45 µg) + dmLT (0.1 and 0.5 µg). Subjects were actively monitored for adverse events for 28 days following the third vaccination. Antibody responses (IgG and IgA) were characterized in the serum and from lymphocyte supernatants (ALS) to CS6 and the native ETEC heat labile enterotoxin, LT. RESULTS: Across all dose cohorts, the vaccine was safe and well-tolerated with no vaccine-related severe or serious adverse events. Among vaccine-related adverse events, a majority (98%) were mild with 79% being short-lived vaccine site reactions. Robust antibody responses were induced in a dose-dependent manner with a clear dmLT adjuvant effect. Response rates in subjects receiving 45 µg CssBA and 0.5 µg dmLT ranged from 50 to 100% across assays. CONCLUSION: This is the first study to demonstrate the safety and immunogenicity of CssBA and/or dmLT administered intramuscularly. Co-administration of the two components induced robust immune responses to CS6 and LT, paving the way for future studies to evaluate the efficacy of this vaccine target and development of a multivalent, subunit ETEC vaccine.


Asunto(s)
Toxinas Bacterianas , Escherichia coli Enterotoxigénica , Infecciones por Escherichia coli , Proteínas de Escherichia coli , Vacunas contra Escherichia coli , Anticuerpos Antibacterianos , Niño , Enterotoxinas , Infecciones por Escherichia coli/prevención & control , Proteínas de Escherichia coli/genética , Vacunas contra Escherichia coli/efectos adversos , Calor , Humanos , Vacunas de Subunidad
8.
PLoS One ; 15(12): e0239888, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33264302

RESUMEN

BACKGROUND: Human challenge models for enterotoxigenic Escherichia coli (ETEC) facilitate vaccine down-selection. The B7A (O148:H28 CS6+LT+ST+) strain is important for vaccine development. We sought to refine the B7A model by identifying a dose and fasting regimen consistently inducing moderate-severe diarrhea. METHODS: An initial cohort of 28 subjects was randomized (1:1:1:1) to receive B7A following an overnight fast at doses of 108 or 109 colony forming units (cfu) or a 90-minute fast at doses of 109 or 1010 cfu. A second cohort included naïve and rechallenged subjects who had moderate-severe diarrhea and were given the target regimen. Immune responses to important ETEC antigens were assessed. RESULTS: Among subjects receiving 108 cfu of B7A, overnight fast, or 109 cfu, 90-minute fast, 42.9% (3/7) had moderate-severe diarrhea. Higher attack rates (71.4%; 5/7) occurred in subjects receiving 109 cfu, overnight fast, or 1010 cfu, 90-minute fast. Upon rechallenge with 109 cfu of B7A, overnight fast, 5/11 (45.5%) had moderate-severe diarrhea; the attack rate among concurrently challenge naïve subjects was 57.9% (11/19). Anti-CS6, O148 LPS and LT responses were modest across all groups. CONCLUSIONS: An overnight fast enabled a reduction in the B7A inoculum dose; however, the attack rate was inconsistent and protection upon rechallenge was minimal.


Asunto(s)
Antígenos Bacterianos/análisis , Diarrea/etiología , Escherichia coli Enterotoxigénica/patogenicidad , Infecciones por Escherichia coli/microbiología , Proteínas de Escherichia coli/análisis , Vacunas contra Escherichia coli , Adolescente , Adulto , Anticuerpos Antibacterianos/sangre , Antígenos Bacterianos/inmunología , Carga Bacteriana , Toxinas Bacterianas/inmunología , Ciprofloxacina/uso terapéutico , Diarrea/microbiología , Diarrea/terapia , Relación Dosis-Respuesta Inmunológica , Escherichia coli Enterotoxigénica/inmunología , Escherichia coli Enterotoxigénica/aislamiento & purificación , Enterotoxinas/inmunología , Infecciones por Escherichia coli/prevención & control , Proteínas de Escherichia coli/inmunología , Ayuno , Heces/microbiología , Femenino , Fluidoterapia , Humanos , Inmunoglobulina G/sangre , Inmunoglobulina M/sangre , Lipopolisacáridos/inmunología , Masculino , Persona de Mediana Edad , Distribución Aleatoria , Factores de Tiempo , Adulto Joven
9.
PLoS Pathog ; 16(10): e1008848, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33007034

RESUMEN

Colonization factor CFA/I defines the major adhesive fimbriae of enterotoxigenic Escherichia coli and mediates bacterial attachment to host intestinal epithelial cells. The CFA/I fimbria consists of a tip-localized minor adhesive subunit, CfaE, and thousands of copies of the major subunit CfaB polymerized into an ordered helical rod. Biosynthesis of CFA/I fimbriae requires the assistance of the periplasmic chaperone CfaA and outer membrane usher CfaC. Although the CfaE subunit is proposed to initiate the assembly of CFA/I fimbriae, how it performs this function remains elusive. Here, we report the establishment of an in vitro assay for CFA/I fimbria assembly and show that stabilized CfaA-CfaB and CfaA-CfaE binary complexes together with CfaC are sufficient to drive fimbria formation. The presence of both CfaA-CfaE and CfaC accelerates fimbria formation, while the absence of either component leads to linearized CfaB polymers in vitro. We further report the crystal structure of the stabilized CfaA-CfaE complex, revealing features unique for biogenesis of Class 5 fimbriae.


Asunto(s)
Adhesinas Bacterianas/metabolismo , Escherichia coli Enterotoxigénica/fisiología , Proteínas de Escherichia coli/metabolismo , Proteínas Fimbrias/metabolismo , Fimbrias Bacterianas/fisiología , Chaperonas Moleculares/metabolismo , Secuencia de Aminoácidos , Citoplasma , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas Fimbrias/genética , Chaperonas Moleculares/genética , Conformación Proteica , Homología de Secuencia de Aminoácido
10.
Int J Mol Sci ; 21(16)2020 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-32824772

RESUMEN

Infectious diarrhea affects over four billion individuals annually and causes over a million deaths each year. Though not typically prescribed for treatment of uncomplicated diarrheal disease, antimicrobials serve as a critical part of the armamentarium used to treat severe or persistent cases. Due to widespread over- and misuse of antimicrobials, there has been an alarming increase in global resistance, for which a standardized methodology for geographic surveillance would be highly beneficial. To demonstrate that a standardized methodology could be used to provide molecular surveillance of antimicrobial resistance (AMR) genes, we initiated a pilot study to test 130 diarrheal pathogens (Campylobacter spp., Escherichia coli, Salmonella, and Shigella spp.) from the USA, Peru, Egypt, Cambodia, and Kenya for the presence/absence of over 200 AMR determinants. We detected a total of 55 different determinants conferring resistance to ten different categories of antimicrobials: genes detected in ≥ 25 samples included blaTEM, tet(A), tet(B), mac(A), mac(B), aadA1/A2, strA, strB, sul1, sul2, qacEΔ1, cmr, and dfrA1. The number of determinants per strain ranged from none (several Campylobacter spp. strains) to sixteen, with isolates from Egypt harboring a wider variety and greater number of genes per isolate than other sites. Two samples harbored carbapenemase genes, blaOXA-48 or blaNDM. Genes conferring resistance to azithromycin (ere(A), mph(A)/mph(K), erm(B)), a first-line therapeutic for severe diarrhea, were detected in over 10% of all Enterobacteriaceae tested: these included >25% of the Enterobacteriaceae from Egypt and Kenya. Forty-six percent of the Egyptian Enterobacteriaceae harbored genes encoding CTX-M-1 or CTX-M-9 families of extended-spectrum ß-lactamases. Overall, the data provide cross-comparable resistome information to establish regional trends in support of international surveillance activities and potentially guide geospatially informed medical care.


Asunto(s)
Campylobacter/genética , Diarrea/microbiología , Farmacorresistencia Microbiana , Escherichia coli Enteropatógena/genética , Genes Bacterianos , Salmonella/genética , Shigella/genética , Antibacterianos/toxicidad , Campylobacter/efectos de los fármacos , Campylobacter/aislamiento & purificación , Campylobacter/patogenicidad , Diarrea/epidemiología , Escherichia coli Enteropatógena/efectos de los fármacos , Escherichia coli Enteropatógena/aislamiento & purificación , Escherichia coli Enteropatógena/patogenicidad , Humanos , Salmonella/efectos de los fármacos , Salmonella/aislamiento & purificación , Salmonella/patogenicidad , Shigella/efectos de los fármacos , Shigella/aislamiento & purificación , Shigella/patogenicidad
11.
Infect Immun ; 88(11)2020 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-32839188

RESUMEN

Recent efforts to develop an enterotoxigenic Escherichia coli (ETEC) vaccine have focused on the antigenically conserved tip adhesins of colonization factors. We showed previously that intranasal immunization with dsc19CfaE, a soluble variant of the in cis donor strand-complemented tip adhesin of a colonization factor of the class 5 family (CFA/I) fimbria, is highly immunogenic and protects against oral challenge with CFA/I-positive (CFA/I+) ETEC strain H10407 in the Aotus nancymaae nonhuman primate. We also reported a cholera toxin (CT)-like chimera (called dsc19CfaE-CTA2/CTB) in which the CTA1 domain of CT was replaced by dsc19CfaE that was strongly immunogenic when administered intranasally or orogastrically in mice. Here, we evaluate the immunogenicity and protective efficacy (PE) of a refined and more stable chimera comprised of a pentameric B subunit of ETEC heat-labile toxin (LTB) in lieu of the CTB pentamer and a donor strand truncation (dsc14) of CfaE. The refined chimera, dsc14CfaE-sCTA2/LTB, was highly immunogenic in mice when administered intranasally or intradermally, eliciting serum and fecal antibody responses against CfaE and LTB, as well as strong hemagglutination inhibition titers, a surrogate for neutralization of intestinal adhesion mediated by CfaE. Moreover, the chimera was safe and highly immunogenic when administered intradermally to guinea pigs. In A. nancymaae, intradermal (i.d.) immunization with chimera plus single-mutant heat-labile toxin [LT(R192G)] elicited strong serum anti-CfaE and anti-LTB antibody responses and conferred significant reduction of diarrhea compared to phosphate-buffered saline (PBS) controls (PE = 84.1%; P < 0.02). These data support the further evaluation of dsc14CfaE-sCTA2/LTB as an ETEC vaccine in humans.


Asunto(s)
Adhesinas de Escherichia coli/inmunología , Toxina del Cólera/inmunología , Infecciones por Escherichia coli/inmunología , Vacunas contra Escherichia coli/inmunología , Animales , Aotidae , Escherichia coli Enterotoxigénica/inmunología , Infecciones por Escherichia coli/prevención & control , Cobayas , Ratones , Proteínas Recombinantes de Fusión/inmunología
12.
Infect Immun ; 88(11)2020 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-32839190

RESUMEN

Enterotoxigenic Escherichia coli (ETEC) is a leading diarrheagenic bacterial pathogen among travelers and children in resource-limited regions. Adherence to host intestinal cells mediated by ETEC fimbriae is believed to be a critical first step in ETEC pathogenesis. These fimbriae are categorized into related classes based on sequence similarity, with members of the class 5 fimbrial family being the best characterized. The eight related members of the ETEC class 5 fimbrial family are subdivided into three subclasses (5a, 5b, and 5c) that share similar structural arrangements, including a fimbrial tip adhesin. However, sequence variability among the class 5 adhesins may hinder the generation of cross-protective antibodies. To better understand functional epitopes of the class 5 adhesins and their ability to induce intraclass antibody responses, we produced 28 antiadhesin monoclonal antibodies (MAbs) to representative adhesins CfaE, CsbD, and CotD, respectively. We determined the MAb cross-reactivities, localized the epitopes, and measured functional activities as potency in inhibition of hemagglutination induced by class 5 fimbria-bearing ETEC. The MAbs' reactivities to a panel of class 5 adhesins in enzyme-linked immunosorbent assays (ELISAs) revealed several reactivity patterns, including individual adhesin specificity, intrasubclass specificity, intersubclass specificity, and class-wide cross-reactivity, suggesting that some conserved epitopes, including two conserved arginines, are shared by the class 5 adhesins. However, the cross-reactive MAbs had functional activities limited to strains expressing colonization factor antigen I (CFA/I), coli surface antigen 17 (CS17), or CS1, suggesting that the breadth of functional activities of the MAbs was more restricted than the repertoire of cross-reactivities measured by ELISA. The results imply that multivalent adhesin-based ETEC vaccines or prophylactics need more than one active component to reach broad protection.


Asunto(s)
Adhesinas de Escherichia coli/inmunología , Anticuerpos Monoclonales/inmunología , Reacciones Cruzadas/inmunología , Escherichia coli Enterotoxigénica/inmunología , Animales , Anticuerpos Antibacterianos/inmunología , Antígenos Bacterianos/inmunología , Mapeo Epitopo , Femenino , Ratones , Ratones Endogámicos BALB C
13.
PLoS One ; 15(3): e0230138, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32176708

RESUMEN

Surface-expressed colonization factors and their subunits are promising candidates for inclusion into a multivalent vaccine targeting enterotoxigenic Escherichia coli (ETEC), a leading cause of acute bacterial diarrhea in developing regions. However, soluble antigens are often poorly immunogenic in the absence of an adjuvant. We show here that the serum immune response to CfaE, the adhesin of the ETEC colonization factor CFA/I, can be enhanced in BALB/c mice by immunization with a chimeric antigen containing CfaE and pentameric cholera toxin B subunit (CTB) of cholera toxin from Vibrio cholerae. We constructed this antigen by replacing the coding sequence for the A1 domain of the cholera toxin A subunit (CTA) with the sequence of donor strand complemented CfaE (dscCfaE) within the cholera toxin operon, resulting in a dscCfaE-CTA2 fusion. After expression, via non-covalent interactions between CTA2 and CTB, the fusion and CTB polypeptides assemble into a complex containing a single dscCfaE-CTA2 protein bound to pentameric CTB (dscCfaE-CTA2/CTB). This holotoxin-like chimera retained the GM1 ganglioside binding activity of CTB, as well as the ability of CfaE to mediate the agglutination of bovine red blood cells when adsorbed to polystyrene beads. When administered intranasally to mice, the presence of CTB in the chimera significantly increased the serum immune response to CfaE compared to dscCfaE alone, stimulating a response similar to that obtained with a matched admixture of dscCfaE and CTB. However, by the orogastric route, immunization with the chimera elicited a superior functional immune response compared to an equivalent admixture of dscCfaE and CTB, supporting further investigation of the chimera as an ETEC vaccine candidate.


Asunto(s)
Toxina del Cólera , Escherichia coli Enterotoxigénica , Vacunas contra Escherichia coli , Proteínas Fimbrias , Proteínas Recombinantes de Fusión , Animales , Femenino , Ratones , Adhesinas Bacterianas/inmunología , Adhesinas Bacterianas/metabolismo , Adyuvantes Inmunológicos/administración & dosificación , Toxina del Cólera/genética , Toxina del Cólera/inmunología , Toxina del Cólera/metabolismo , Escherichia coli Enterotoxigénica/inmunología , Vacunas contra Escherichia coli/inmunología , Proteínas Fimbrias/genética , Proteínas Fimbrias/inmunología , Proteínas Fimbrias/metabolismo , Inmunización , Inmunogenicidad Vacunal , Ratones Endogámicos BALB C , Proteínas Recombinantes de Fusión/inmunología , Proteínas Recombinantes de Fusión/metabolismo
14.
Vaccine ; 37(42): 6134-6138, 2019 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-31492474

RESUMEN

dscCfaE is a recombinant form of the CFA/I tip adhesin CfaE, expressed by a large proportion of enterotoxigenic E. coli (ETEC). It is highly immunogenic by the intranasal route in mice and Aotus nancymaae, protective against challenge with CFA/I+ ETEC in an A. nancymaae challenge model, and antibodies to dscCfaE passively protect against CFA/I+ ETEC challenge in human volunteers. Here, we show that transcutaneous immunization (TCI) with dscCfaE in mice resulted in strong anti-CfaE IgG serum responses, with a clear dose-response effect. Co-administration with heat-labile enterotoxin (LT) resulted in enhanced immune responses over those elicited by dscCfaE alone and strong anti-LT antibody responses. The highest dose of dscCfaE administered transcutaneously with LT elicited strong HAI titers, a surrogate for the neutralization of intestinal adhesion. Fecal anti-adhesin IgG and IgA antibody responses were also induced. These findings support the feasibility of TCI for the application of an adhesin-toxin based ETEC vaccine.


Asunto(s)
Toxinas Bacterianas/inmunología , Escherichia coli Enterotoxigénica/inmunología , Enterotoxinas/inmunología , Proteínas de Escherichia coli/inmunología , Vacunas contra Escherichia coli/inmunología , Proteínas Fimbrias/inmunología , Vacunación/métodos , Adhesinas de Escherichia coli/inmunología , Administración Cutánea , Animales , Femenino , Inmunoglobulina A/sangre , Inmunoglobulina A/inmunología , Inmunoglobulina G/sangre , Inmunoglobulina G/inmunología , Ratones , Ratones Endogámicos BALB C , Proteínas Recombinantes/inmunología
16.
Infect Immun ; 87(3)2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30602504

RESUMEN

CS6, a prevalent surface antigen expressed in nearly 20% of clinical enterotoxigenic Escherichia coli (ETEC) isolates, is comprised of two major subunit proteins, CssA and CssB. Using donor strand complementation, we constructed a panel of recombinant proteins of 1 to 3 subunits that contained combinations of CssA and/or CssB subunits and a donor strand, a C-terminal extension of 16 amino acids that was derived from the N terminus of either CssA or CssB. While the entire panel of recombinant proteins could be obtained as soluble, folded proteins, it was observed that the proteins possessing a heterologous donor strand, derived from the CS6 subunit different from the C-terminal subunit, had the highest degree of physical and thermal stability. Immunological characterization of the proteins, using a murine model, demonstrated that robust anti-CS6 immune responses were generated from fusions containing both CssA and CssB. Proteins containing only CssA were weakly immunogenic. Heterodimers, i.e., CssBA and CssAB, were sufficient to recapitulate the anti-CS6 immune response elicited by immunization with CS6, including the generation of functional neutralizing antibodies, as no further enhancement of the response was obtained with the addition of a third CS6 subunit. Our findings here demonstrate the feasibility of including a recombinant CS6 subunit protein in a subunit vaccine strategy against ETEC.


Asunto(s)
Antígenos Bacterianos/inmunología , Escherichia coli Enterotoxigénica/metabolismo , Proteínas de Escherichia coli/inmunología , Vacunas contra Escherichia coli/inmunología , Animales , Anticuerpos Antibacterianos/sangre , Antígenos Bacterianos/química , Antígenos Bacterianos/metabolismo , Escherichia coli Enterotoxigénica/inmunología , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Femenino , Regulación Bacteriana de la Expresión Génica , Inmunoglobulina G/sangre , Ratones , Ratones Endogámicos BALB C , Subunidades de Proteína/inmunología
17.
Infect Immun ; 87(2)2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30510102

RESUMEN

The establishment of an animal model that closely approximates enterotoxigenic Escherichia coli (ETEC) disease in humans is critical for the development and evaluation of vaccines against this enteropathogen. Here, we evaluated the susceptibility of Aotus nancymaae, a New World monkey species, to ETEC infection. Animals were challenged orogastrically with 109 to 1011 CFU of the human pathogenic CFA/I+ ETEC strain H10407 and examined for evidence of diarrhea and fecal shedding of bacteria. A clear dose-range effect was obtained, with diarrheal attack rates of 40% to 80%, validated in a follow-on study demonstrating an attack rate of 80% with 1011 CFU of H10407 ETEC. To determine whether this model is an effective approach for assessing ETEC vaccine candidates, we used it to evaluate the ability of the donor strand-complemented CFA/I adhesin CfaE (dscCfaE) to protect against H10407 challenge. In a series of experiments, animals were intranasally vaccinated with dscCfaE alone, dscCfaE with either cholera toxin B-subunit (CTB) or heat-labile toxin (LTB), or phosphate-buffered saline (PBS) alone and then challenged with 1011 CFU of H10407. Control animals vaccinated with PBS had attack rates of 70 to 90% on challenge. Vaccination with dscCfaE, or dscCfaE admixed with CTB or LTB, resulted in a reduction of attack rates, with vaccine efficacies of 66.7% (P = 0.02), 77.7% (P = 0.006), and 42.9% (P = 0.370) to 83.3% (P = 0.041), respectively. In conclusion, we have shown the H10407 ETEC challenge of A. nancymaae to be an effective, reproducible model of ETEC disease, and importantly, we have demonstrated that in this model, vaccination with the prototype vaccine candidate dscCfaE is protective against CF-homologous disease.


Asunto(s)
Escherichia coli Enterotoxigénica/inmunología , Infecciones por Escherichia coli/prevención & control , Vacunas contra Escherichia coli , Administración Intranasal , Animales , Anticuerpos Antibacterianos/sangre , Diarrea/microbiología , Modelos Animales de Enfermedad , Infecciones por Escherichia coli/inmunología , Infecciones por Escherichia coli/microbiología , Heces/microbiología , Humanos , Inmunoglobulina G/sangre , Primates
18.
Vaccine ; 36(45): 6695-6702, 2018 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-30269917

RESUMEN

Enterotoxigenic Escherichia coli (ETEC), Campylobacter jejuni (CJ), and Shigella sp. are major causes of bacterial diarrhea worldwide, but there are no licensed vaccines against any of these pathogens. Most current approaches to ETEC vaccines are based on recombinant proteins that are involved in virulence, particularly adhesins. In contrast, approaches to Shigella and CJ vaccines have included conjugate vaccines in which Shigella lipopolysaccharides (LPS) or CJ capsule polysaccharides are chemically conjugated to proteins. We have explored the feasibility of developing a multi-pathogen vaccine by using ETEC proteins as conjugating partners for CJ and Shigella polysaccharides. We synthesized three vaccines in which two CJ polysaccharides were conjugated to two recombinant ETEC adhesins based on CFA/I (CfaEB) and CS6 (CssBA), and LPS from Shigella flexneri was also conjugated to CfaEB. The vaccines were immunogenic in mice as monovalent, bivalent and trivalent formulations. Importantly, functional antibodies capable of inducing hemaglutination inhibition (HAI) of a CFA/I expressing ETEC strain were induced in all vaccines containing CfaEB. These data suggest that conjugate vaccines could be a platform for a multi-pathogen, multi-serotype vaccine against the three major causes of diarrheal disease worldwide.


Asunto(s)
Campylobacter jejuni/patogenicidad , Escherichia coli Enterotoxigénica/patogenicidad , Shigella/patogenicidad , Vacunas Conjugadas/uso terapéutico , Animales , Campylobacter jejuni/inmunología , Escherichia coli Enterotoxigénica/inmunología , Ensayo de Inmunoadsorción Enzimática , Pruebas de Inhibición de Hemaglutinación , Ratones , Ratones Endogámicos BALB C , Shigella/inmunología
19.
Proc Natl Acad Sci U S A ; 115(38): E8968-E8976, 2018 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-30126994

RESUMEN

Enterotoxigenic Escherichia coli (ETEC) is a global diarrheal pathogen that utilizes adhesins and secreted enterotoxins to cause disease in mammalian hosts. Decades of research on virulence factor regulation in ETEC has revealed a variety of environmental factors that influence gene expression, including bile, pH, bicarbonate, osmolarity, and glucose. However, other hallmarks of the intestinal tract, such as low oxygen availability, have not been examined. Further, determining how ETEC integrates these signals in the complex host environment is challenging. To address this, we characterized ETEC's response to the human host using samples from a controlled human infection model. We found ETEC senses environmental oxygen to globally influence virulence factor expression via the oxygen-sensitive transcriptional regulator fumarate and nitrate reduction (FNR) regulator. In vitro anaerobic growth replicates the in vivo virulence factor expression profile, and deletion of fnr in ETEC strain H10407 results in a significant increase in expression of all classical virulence factors, including the colonization factor antigen I (CFA/I) adhesin operon and both heat-stable and heat-labile enterotoxins. These data depict a model of ETEC infection where FNR activity can globally influence virulence gene expression, and therefore proximity to the oxygenated zone bordering intestinal epithelial cells likely influences ETEC virulence gene expression in vivo. Outside of the host, ETEC biofilms are associated with seasonal ETEC epidemics, and we find FNR is a regulator of biofilm production. Together these data suggest FNR-dependent oxygen sensing in ETEC has implications for human infection inside and outside of the host.


Asunto(s)
Escherichia coli Enterotoxigénica/patogenicidad , Infecciones por Escherichia coli/microbiología , Proteínas de Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Interacciones Huésped-Patógeno/genética , Proteínas Hierro-Azufre/genética , Adulto , Biopelículas , Diarrea/epidemiología , Diarrea/microbiología , Diarrea/prevención & control , Células Epiteliales/microbiología , Infecciones por Escherichia coli/epidemiología , Infecciones por Escherichia coli/inmunología , Infecciones por Escherichia coli/prevención & control , Proteínas de Escherichia coli/metabolismo , Vacunas contra Escherichia coli/administración & dosificación , Femenino , Voluntarios Sanos , Humanos , Intestinos/citología , Intestinos/microbiología , Proteínas Hierro-Azufre/metabolismo , Masculino , Persona de Mediana Edad , Virulencia/genética , Factores de Virulencia/genética , Factores de Virulencia/inmunología , Adulto Joven
20.
J Clin Invest ; 128(8): 3298-3311, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-29771685

RESUMEN

Enterotoxigenic Escherichia coli (ETEC) infections are highly prevalent in developing countries, where clinical presentations range from asymptomatic colonization to severe cholera-like illness. The molecular basis for these varied presentations, which may involve strain-specific virulence features as well as host factors, has not been elucidated. We demonstrate that, when challenged with ETEC strain H10407, originally isolated from a case of cholera-like illness, blood group A human volunteers developed severe diarrhea more frequently than individuals from other blood groups. Interestingly, a diverse population of ETEC strains, including H10407, secrete the EtpA adhesin molecule. As many bacterial adhesins also agglutinate red blood cells, we combined the use of glycan arrays, biolayer inferometry, and noncanonical amino acid labeling with hemagglutination studies to demonstrate that EtpA is a dominant ETEC blood group A-specific lectin/hemagglutinin. Importantly, we have also shown that EtpA interacts specifically with glycans expressed on intestinal epithelial cells from blood group A individuals and that EtpA-mediated bacterial-host interactions accelerate bacterial adhesion and effective delivery of both the heat-labile and heat-stable toxins of ETEC. Collectively, these data provide additional insight into the complex molecular basis of severe ETEC diarrheal illness that may inform rational design of vaccines to protect those at highest risk.


Asunto(s)
Sistema del Grupo Sanguíneo ABO/metabolismo , Diarrea , Escherichia coli Enterotoxigénica , Células Epiteliales/metabolismo , Infecciones por Escherichia coli/metabolismo , Mucosa Intestinal/metabolismo , Adhesinas de Escherichia coli/metabolismo , Diarrea/metabolismo , Diarrea/microbiología , Diarrea/patología , Escherichia coli Enterotoxigénica/metabolismo , Escherichia coli Enterotoxigénica/patogenicidad , Células Epiteliales/microbiología , Células Epiteliales/patología , Infecciones por Escherichia coli/patología , Femenino , Humanos , Mucosa Intestinal/microbiología , Mucosa Intestinal/patología , Masculino , Índice de Severidad de la Enfermedad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...