Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant Cell ; 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38635902

RESUMEN

Cereal grains are an important source of food and feed. To provide comprehensive spatiotemporal information about biological processes in developing seeds of cultivated barley (Hordeum vulgare L. subsp. vulgare), we performed a transcriptomic study of the embryo, endosperm, and seed maternal tissues collected from grains 4-32 days after pollination. Weighted gene co-expression network and motif enrichment analyses identified specific groups of genes and transcription factors (TFs) potentially regulating barley seed tissue development. We defined a set of tissue-specific marker genes and families of TFs for functional studies of the pathways controlling barley grain development. Assessing selected groups of chromatin regulators revealed that epigenetic processes are highly dynamic and likely play a major role during barley endosperm development. The repressive H3K27me3 modification is globally reduced in endosperm tissues and at specific genes related to development and storage compounds. Altogether, this atlas uncovers the complexity of developmentally regulated gene expression in developing barley grains.

2.
Plant Cell Environ ; 47(4): 1363-1378, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38221855

RESUMEN

Eucalyptus is a widely planted hardwood tree species due to its fast growth, superior wood properties and adaptability. However, the post-transcriptional regulatory mechanisms controlling tissue development and stress responses in Eucalyptus remain poorly understood. In this study, we performed a comprehensive analysis of the gene expression profile and the alternative splicing (AS) landscape of E. grandis using strand-specific RNA-Seq, which encompassed 201 libraries including different organs, developmental stages, and environmental stresses. We identified 10 416 genes (33.49%) that underwent AS, and numerous differentially expressed and/or differential AS genes involved in critical biological processes, such as primary-to-secondary growth transition of stems, adventitious root formation, aging and responses to phosphorus- or boron-deficiency. Co-expression analysis of AS events and gene expression patterns highlighted the potential upstream regulatory role of AS events in multiple processes. Additionally, we highlighted the lignin biosynthetic pathway to showcase the potential regulatory functions of AS events in the KNAT3 and IRL3 genes within this pathway. Our high-quality expression atlas and AS landscape serve as valuable resources for unravelling the genetic control of woody plant development, long-term adaptation, and understanding transcriptional diversity in Eucalyptus. Researchers can conveniently access these resources through the interactive ePlant browser (https://bar.utoronto.ca/eplant_eucalyptus).


Asunto(s)
Eucalyptus , Genes de Plantas , Genes de Plantas/genética , Eucalyptus/fisiología , Empalme Alternativo/genética , Madera , Transcriptoma , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas
3.
Plant Physiol ; 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38088205

RESUMEN

Angiosperms are characterized by the formation of flowers, and in their inner floral whorl, one or various gynoecia are produced. These female reproductive structures are responsible for fruit and seed production, thus ensuring the reproductive competence of angiosperms. In Arabidopsis (Arabidopsis thaliana), the gynoecium is composed of two fused carpels with different tissues that need to develop and differentiate to form a mature gynoecium and thus the reproductive competence of Arabidopsis. For these reasons, they have become the object of study for floral and fruit development. However, due to the complexity of the gynoecium, specific spatio-temporal tissue expression patterns are still scarce. In this study, we used precise laser-assisted microdissection and high-throughput RNA sequencing to describe the transcriptional profiles of the medial and lateral domain tissues of the Arabidopsis gynoecium. We provide evidence that the method used is reliable and that, in addition to corroborating gene expression patterns of previously reported regulators of these tissues, we found genes whose expression dynamics point to being involved in cytokinin and auxin homeostasis and in cell cycle progression. Furthermore, based on differential gene expression analyses, we functionally characterized several genes and found that they are involved in gynoecium development. This resource is available via the Arabidopsis eFP browser and will serve the community in future studies on developmental and reproductive biology.

4.
Methods Mol Biol ; 2698: 351-360, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37682484

RESUMEN

Gene regulatory networks (GRNs) are important for determining how an organism develops and how it responds to external stimuli. In the case of Arabidopsis thaliana, several GRNs have been identified covering many important biological processes. We present AGENT, the Arabidopsis GEne Network Tool, for exploring and analyzing published GRNs. Using tools in AGENT, regulatory motifs such as feed-forward loops can be easily identified. Nodes with high centrality-and hence importance-can likewise be identified. Gene expression data can also be overlaid onto GRNs to help discover subnetworks acting in specific tissues or under certain conditions.


Asunto(s)
Arabidopsis , Arabidopsis/genética , Redes Reguladoras de Genes
5.
Plant J ; 114(3): 463-481, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36880270

RESUMEN

Plant responses to environmental change are mediated via changes in cellular metabolomes. However, <5% of signals obtained from liquid chromatography tandem mass spectrometry (LC-MS/MS) can be identified, limiting our understanding of how metabolomes change under biotic/abiotic stress. To address this challenge, we performed untargeted LC-MS/MS of leaves, roots, and other organs of Brachypodium distachyon (Poaceae) under 17 organ-condition combinations, including copper deficiency, heat stress, low phosphate, and arbuscular mycorrhizal symbiosis. We found that both leaf and root metabolomes were significantly affected by the growth medium. Leaf metabolomes were more diverse than root metabolomes, but the latter were more specialized and more responsive to environmental change. We found that 1 week of copper deficiency shielded the root, but not the leaf metabolome, from perturbation due to heat stress. Machine learning (ML)-based analysis annotated approximately 81% of the fragmented peaks versus approximately 6% using spectral matches alone. We performed one of the most extensive validations of ML-based peak annotations in plants using thousands of authentic standards, and analyzed approximately 37% of the annotated peaks based on these assessments. Analyzing responsiveness of each predicted metabolite class to environmental change revealed significant perturbations of glycerophospholipids, sphingolipids, and flavonoids. Co-accumulation analysis further identified condition-specific biomarkers. To make these results accessible, we developed a visualization platform on the Bio-Analytic Resource for Plant Biology website (https://bar.utoronto.ca/efp_brachypodium_metabolites/cgi-bin/efpWeb.cgi), where perturbed metabolite classes can be readily visualized. Overall, our study illustrates how emerging chemoinformatic methods can be applied to reveal novel insights into the dynamic plant metabolome and stress adaptation.


Asunto(s)
Brachypodium , Brachypodium/metabolismo , Cromatografía Liquida , Teoría de la Información , Cobre/metabolismo , Espectrometría de Masas en Tándem , Metabolómica/métodos , Metaboloma
6.
Genome Biol Evol ; 15(3)2023 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-36757383

RESUMEN

Euphorbia peplus (petty spurge) is a small, fast-growing plant that is native to Eurasia and has become a naturalized weed in North America and Australia. Euphorbia peplus is not only medicinally valuable, serving as a source for the skin cancer drug ingenol mebutate, but also has great potential as a model for latex production owing to its small size, ease of manipulation in the laboratory, and rapid reproductive cycle. To help establish E. peplus as a new model, we generated a 267.2-Mb Hi-C-anchored PacBio HiFi nuclear genome assembly with a BUSCO score of 98.5%, a genome annotation based on RNA-seq data from six organs, and publicly accessible tools including a genome browser and an interactive organ-specific expression atlas. Chromosome number is highly variable across Euphorbia species. Using a comparative analysis of our newly sequenced E. peplus genome with other Euphorbiaceae genomes, we show that variation in Euphorbia chromosome number between E. peplus and Euphorbia lathyris is likely due to fragmentation and rearrangement rather than chromosomal duplication followed by diploidization of the duplicated sequence. Moreover, we found that the E. peplus genome is relatively compact compared with related members of the genus in part due to restricted expansion of the Ty3 transposon family. Finally, we identify a large gene cluster that contains many previously identified enzymes in the putative ingenol mebutate biosynthesis pathway, along with additional gene candidates for this biosynthetic pathway. The genomic resources we have created for E. peplus will help advance research on latex production and ingenol mebutate biosynthesis in the commercially important Euphorbiaceae family.


Asunto(s)
Euphorbiaceae , Látex , Tamaño del Genoma , Cromosomas
7.
Plant Cell ; 35(3): 975-993, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36660928

RESUMEN

Elucidating enzyme-substrate relationships in posttranslational modification (PTM) networks is crucial for understanding signal transduction pathways but is technically difficult because enzyme-substrate interactions tend to be transient. Here, we demonstrate that TurboID-based proximity labeling (TbPL) effectively and specifically captures the substrates of kinases and phosphatases. TbPL-mass spectrometry (TbPL-MS) identified over 400 proximal proteins of Arabidopsis thaliana BRASSINOSTEROID-INSENSITIVE2 (BIN2), a member of the GLYCOGEN SYNTHASE KINASE 3 (GSK3) family that integrates signaling pathways controlling diverse developmental and acclimation processes. A large portion of the BIN2-proximal proteins showed BIN2-dependent phosphorylation in vivo or in vitro, suggesting that these are BIN2 substrates. Protein-protein interaction network analysis showed that the BIN2-proximal proteins include interactors of BIN2 substrates, revealing a high level of interactions among the BIN2-proximal proteins. Our proteomic analysis establishes the BIN2 signaling network and uncovers BIN2 functions in regulating key cellular processes such as transcription, RNA processing, translation initiation, vesicle trafficking, and cytoskeleton organization. We further discovered significant overlap between the GSK3 phosphorylome and the O-GlcNAcylome, suggesting an evolutionarily ancient relationship between GSK3 and the nutrient-sensing O-glycosylation pathway. Our work presents a powerful method for mapping PTM networks, a large dataset of GSK3 kinase substrates, and important insights into the signaling network that controls key cellular functions underlying plant growth and acclimation.


Asunto(s)
Proteínas Quinasas , Proteómica , Transducción de Señal , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Biotina/química , Biotinilación , Brasinoesteroides/metabolismo , Fosforilación , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Proteómica/métodos , Transducción de Señal/fisiología
8.
Plant J ; 114(1): 209-224, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36710629

RESUMEN

Reproductive success hinges on precisely coordinated meiosis, yet our understanding of how structural rearrangements of chromatin and phase transitions during meiosis are transcriptionally regulated is limited. In crop plants, detailed analysis of the meiotic transcriptome could identify regulatory genes and epigenetic regulators that can be targeted to increase recombination rates and broaden genetic variation, as well as provide a resource for comparison among eukaryotes of different taxa to answer outstanding questions about meiosis. We conducted a meiotic stage-specific analysis of messenger RNA (mRNA), small non-coding RNA (sncRNA), and long intervening/intergenic non-coding RNA (lincRNA) in wheat (Triticum aestivum L.) and revealed novel mechanisms of meiotic transcriptional regulation and meiosis-specific transcripts. Amidst general repression of mRNA expression, significant enrichment of ncRNAs was identified during prophase I relative to vegetative cells. The core meiotic transcriptome was comprised of 9309 meiosis-specific transcripts, 48 134 previously unannotated meiotic transcripts, and many known and novel ncRNAs differentially expressed at specific stages. The abundant meiotic sncRNAs controlled the reprogramming of central metabolic pathways by targeting genes involved in photosynthesis, glycolysis, hormone biosynthesis, and cellular homeostasis, and lincRNAs enhanced the expression of nearby genes. Alternative splicing was not evident in this polyploid species, but isoforms were switched at phase transitions. The novel, stage-specific regulatory controls uncovered here challenge the conventional understanding of this crucial biological process and provide a new resource of requisite knowledge for those aiming to directly modulate meiosis to improve crop plants. The wheat meiosis transcriptome dataset can be queried for genes of interest using an eFP browser located at https://bar.utoronto.ca/efp_wheat/cgi-bin/efpWeb.cgi?dataSource=Wheat_Meiosis.


Asunto(s)
Transcriptoma , Triticum , Triticum/genética , Triticum/metabolismo , Meiosis/genética , ARN Mensajero/genética , ARN no Traducido/genética
9.
Plant Physiol ; 191(1): 35-46, 2023 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-36200899

RESUMEN

We review how a data infrastructure for the Plant Cell Atlas might be built using existing infrastructure and platforms. The Human Cell Atlas has developed an extensive infrastructure for human and mouse single cell data, while the European Bioinformatics Institute has developed a Single Cell Expression Atlas, that currently houses several plant data sets. We discuss issues related to appropriate ontologies for describing a plant single cell experiment. We imagine how such an infrastructure will enable biologists and data scientists to glean new insights into plant biology in the coming decades, as long as such data are made accessible to the community in an open manner.


Asunto(s)
Biología Computacional , Células Vegetales , Animales , Humanos , Ratones , Plantas/genética
10.
New Phytol ; 233(1): 30-51, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34687557

RESUMEN

The economically valuable Brassica species include the six related members of U's Triangle. Despite the agronomic and economic importance of these Brassicas, the impacts of evolution and relatively recent domestication events on the genetic landscape of seed development have not been comprehensively examined in these species. Here we present a 3D transcriptome atlas for the six species of U's Triangle, producing a unique resource that captures gene expression data for the major subcompartments of the seed, from the unfertilized ovule to the mature embryo and seed coat. This comprehensive dataset for seed development in tetraploid and ancestral diploid Brassicas provides new insights into evolutionary divergence and expression bias at the gene and subgenome levels during the domestication of these valued crop species. Comparisons of gene expression associated with regulatory networks and metabolic pathways operating in the embryo and seed coat during seed development reveal differences in storage reserve accumulation and fatty acid metabolism among the six Brassica species. This study illustrates the genetic underpinnings of seed traits and the selective pressures placed on seed production, providing an immense resource for continued investigation of Brassica polyploid biology, genomics and evolution.


Asunto(s)
Brassica napus , Brassica , Brassica/genética , Brassica napus/genética , Diploidia , Poliploidía , Semillas/genética , Transcriptoma/genética
11.
Plant J ; 108(6): 1585-1596, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34695270

RESUMEN

The sequencing of the Arabidopsis thaliana genome 21 years ago ushered in the genomics era for plant research. Since then, an incredible variety of bioinformatic tools permit easy access to large repositories of genomic, transcriptomic, proteomic, epigenomic and other '-omic' data. In this review, we cover some more recent tools (and highlight the 'classics') for exploring such data in order to help formulate quality, testable hypotheses, often without having to generate new experimental data. We cover tools for examining gene expression and co-expression patterns, undertaking promoter analyses and gene set enrichment analyses, and exploring protein-protein and protein-DNA interactions. We will touch on tools that integrate different data sets at the end of the article.


Asunto(s)
Arabidopsis/genética , Arabidopsis/metabolismo , Biología Computacional/métodos , Mapas de Interacción de Proteínas/fisiología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Bases de Datos Genéticas , Epigenómica/métodos , Perfilación de la Expresión Génica , Ontología de Genes , Regiones Promotoras Genéticas
13.
Elife ; 102021 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-34491200

RESUMEN

With growing populations and pressing environmental problems, future economies will be increasingly plant-based. Now is the time to reimagine plant science as a critical component of fundamental science, agriculture, environmental stewardship, energy, technology and healthcare. This effort requires a conceptual and technological framework to identify and map all cell types, and to comprehensively annotate the localization and organization of molecules at cellular and tissue levels. This framework, called the Plant Cell Atlas (PCA), will be critical for understanding and engineering plant development, physiology and environmental responses. A workshop was convened to discuss the purpose and utility of such an initiative, resulting in a roadmap that acknowledges the current knowledge gaps and technical challenges, and underscores how the PCA initiative can help to overcome them.


Asunto(s)
Células Vegetales , Agricultura , Chlamydomonas reinhardtii , Cloroplastos , Biología Computacional , Procesamiento de Imagen Asistido por Computador , Células Vegetales/fisiología , Desarrollo de la Planta , Plantas/clasificación , Plantas/genética , Zea mays
14.
Cell ; 184(12): 3333-3348.e19, 2021 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-34010619

RESUMEN

Plant species have evolved myriads of solutions, including complex cell type development and regulation, to adapt to dynamic environments. To understand this cellular diversity, we profiled tomato root cell type translatomes. Using xylem differentiation in tomato, examples of functional innovation, repurposing, and conservation of transcription factors are described, relative to the model plant Arabidopsis. Repurposing and innovation of genes are further observed within an exodermis regulatory network and illustrate its function. Comparative translatome analyses of rice, tomato, and Arabidopsis cell populations suggest increased expression conservation of root meristems compared with other homologous populations. In addition, the functions of constitutively expressed genes are more conserved than those of cell type/tissue-enriched genes. These observations suggest that higher order properties of cell type and pan-cell type regulation are evolutionarily conserved between plants and animals.


Asunto(s)
Arabidopsis/genética , Genes de Plantas , Invenciones , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/genética , Solanum lycopersicum/genética , Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes , Proteínas Fluorescentes Verdes/metabolismo , Solanum lycopersicum/citología , Meristema/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/citología , Regiones Promotoras Genéticas/genética , Biosíntesis de Proteínas , Especificidad de la Especie , Factores de Transcripción/metabolismo , Xilema/genética
15.
Plant J ; 107(1): 287-302, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33866624

RESUMEN

Mass spectrometry is the predominant analytical tool used in the field of plant lipidomics. However, there are many challenges associated with the mass spectrometric detection and identification of lipids because of the highly complex nature of plant lipids. Studies into lipid biosynthetic pathways, gene functions in lipid metabolism, lipid changes during plant growth and development, and the holistic examination of the role of plant lipids in environmental stress responses are often hindered. Here, we leveraged a robust pipeline that we previously established to extract and analyze lipid profiles of different tissues and developmental stages from the model plant Arabidopsis thaliana. We analyzed seven tissues at several different developmental stages and identified more than 200 lipids from each tissue analyzed. The data were used to create a web-accessible in silico lipid map that has been integrated into an electronic Fluorescent Pictograph (eFP) browser. This in silico library of Arabidopsis lipids allows the visualization and exploration of the distribution and changes of lipid levels across selected developmental stages. Furthermore, it provides information on the characteristic fragments of lipids and adducts observed in the mass spectrometer and their retention times, which can be used for lipid identification. The Arabidopsis tissue lipid map can be accessed at http://bar.utoronto.ca/efp_arabidopsis_lipid/cgi-bin/efpWeb.cgi.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Lipidómica/métodos , Lípidos/análisis , Visualización de Datos , Metabolismo Energético , Glucurónidos/análisis , Glucurónidos/metabolismo , Metabolismo de los Lípidos , Fotosíntesis , Hojas de la Planta/química , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Plantones/crecimiento & desarrollo , Plantones/metabolismo , Semillas/química , Semillas/crecimiento & desarrollo , Semillas/metabolismo , Espectrometría de Masas en Tándem/métodos , Triglicéridos/metabolismo
16.
Plant Cell ; 33(4): 832-845, 2021 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-33793861

RESUMEN

Twenty years ago, the Arabidopsis thaliana genome sequence was published. This was an important moment as it was the first sequenced plant genome and explicitly brought plant science into the genomics era. At the time, this was not only an outstanding technological achievement, but it was characterized by a superb global collaboration. The Arabidopsis genome was the seed for plant genomic research. Here, we review the development of numerous resources based on the genome that have enabled discoveries across plant species, which has enhanced our understanding of how plants function and interact with their environments.


Asunto(s)
Arabidopsis/genética , Genoma de Planta , Genómica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento , Bases de Datos Genéticas , Epigenómica/métodos , Empalme del ARN , Análisis de Secuencia de ARN , Análisis de la Célula Individual/métodos
17.
BMC Plant Biol ; 21(1): 121, 2021 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-33639842

RESUMEN

BACKGROUND: Transcriptomic studies combined with a well annotated genome have laid the foundations for new understanding of molecular processes. Tools which visualise gene expression patterns have further added to these resources. The manual annotation of the Actinidia chinensis (kiwifruit) genome has resulted in a high quality set of 33,044 genes. Here we investigate gene expression patterns in diverse tissues, visualised in an Electronic Fluorescent Pictograph (eFP) browser, to study the relationship of transcription factor (TF) expression using network analysis. RESULTS: Sixty-one samples covering diverse tissues at different developmental time points were selected for RNA-seq analysis and an eFP browser was generated to visualise this dataset. 2839 TFs representing 57 different classes were identified and named. Network analysis of the TF expression patterns separated TFs into 14 different modules. Two modules consisting of 237 TFs were correlated with floral bud and flower development, a further two modules containing 160 TFs were associated with fruit development and maturation. A single module of 480 TFs was associated with ethylene-induced fruit ripening. Three "hub" genes correlated with flower and fruit development consisted of a HAF-like gene central to gynoecium development, an ERF and a DOF gene. Maturing and ripening hub genes included a KNOX gene that was associated with seed maturation, and a GRAS-like TF. CONCLUSIONS: This study provides an insight into the complexity of the transcriptional control of flower and fruit development, as well as providing a new resource to the plant community. The Actinidia eFP browser is provided in an accessible format that allows researchers to download and work internally.


Asunto(s)
Actinidia/genética , Redes Reguladoras de Genes , Genes de Plantas , Factores de Transcripción/genética , Actinidia/crecimiento & desarrollo , Actinidia/metabolismo , Flores/crecimiento & desarrollo , Frutas/crecimiento & desarrollo , Perfilación de la Expresión Génica , ARN de Planta , RNA-Seq , Navegador Web
18.
Methods Mol Biol ; 2200: 25-89, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33175372

RESUMEN

Bioinformatic tools are now an everyday part of a plant researcher's collection of protocols. They allow almost instantaneous access to large data sets encompassing genomes, transcriptomes, proteomes, epigenomes, and other "-omes," which are now being generated with increasing speed and decreasing cost. With the appropriate queries, such tools can generate quality hypotheses, sometimes without the need for new experimental data. In this chapter, we will investigate some of the tools used for examining gene expression and coexpression patterns, performing promoter analyses and functional classification enrichment for sets of genes, and exploring protein-protein and protein-DNA interactions in Arabidopsis. We will also cover additional tools that allow integration of data from several sources for improved hypothesis generation.


Asunto(s)
Arabidopsis , Biología Computacional , Bases de Datos Genéticas , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Transcriptoma , Arabidopsis/genética , Arabidopsis/metabolismo
19.
Plant Direct ; 4(7): e00248, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32775952

RESUMEN

The multinational Arabidopsis research community is highly collaborative and over the past thirty years these activities have been documented by the Multinational Arabidopsis Steering Committee (MASC). Here, we (a) highlight recent research advances made with the reference plant Arabidopsis thaliana; (b) provide summaries from recent reports submitted by MASC subcommittees, projects and resources associated with MASC and from MASC country representatives; and (c) initiate a call for ideas and foci for the "fourth decadal roadmap," which will advise and coordinate the global activities of the Arabidopsis research community.

20.
Plant Cell ; 32(9): 2742-2762, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32699170

RESUMEN

While root diseases are among the most devastating stresses in global crop production, our understanding of root immunity is still limited relative to our knowledge of immune responses in leaves. Considering that root performance is based on the concerted functions of its different cell types, we undertook a cell type-specific transcriptome analysis to identify gene networks activated in epidermis, cortex, and pericycle cells of Arabidopsis (Arabidopsis thaliana) roots challenged with two immunity elicitors, the bacterial flagellin-derived flg22 and the endogenous Pep1 peptide. Our analyses revealed distinct immunity gene networks in each cell type. To further substantiate our understanding of regulatory patterns underlying these cell type-specific immunity networks, we developed a tool to analyze paired transcription factor binding motifs in the promoters of cell type-specific genes. Our study points toward a connection between cell identity and cell type-specific immunity networks that might guide cell types in launching immune response according to the functional capabilities of each cell type.


Asunto(s)
Arabidopsis/citología , Arabidopsis/inmunología , Redes Reguladoras de Genes/inmunología , Raíces de Plantas/inmunología , Arabidopsis/fisiología , Proteínas de Arabidopsis , Basidiomycota , Sitios de Unión , Regulación de la Expresión Génica de las Plantas , Células Vegetales/inmunología , Inmunidad de la Planta/genética , Inmunidad de la Planta/fisiología , Raíces de Plantas/citología , Raíces de Plantas/microbiología , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas , Transducción de Señal , Transactivadores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...