Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mob DNA ; 15(1): 10, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38711146

RESUMEN

BACKGROUND: The advancement of sequencing technologies results in the rapid release of hundreds of new genome assemblies a year providing unprecedented resources for the study of genome evolution. Within this context, the significance of in-depth analyses of repetitive elements, transposable elements (TEs) in particular, is increasingly recognized in understanding genome evolution. Despite the plethora of available bioinformatic tools for identifying and annotating TEs, the phylogenetic distance of the target species from a curated and classified database of repetitive element sequences constrains any automated annotation effort. Moreover, manual curation of raw repeat libraries is deemed essential due to the frequent incompleteness of automatically generated consensus sequences. RESULTS: Here, we present an example of a crowd-sourcing effort aimed at curating and annotating TE libraries of two non-model species built around a collaborative, peer-reviewed teaching process. Manual curation and classification are time-consuming processes that offer limited short-term academic rewards and are typically confined to a few research groups where methods are taught through hands-on experience. Crowd-sourcing efforts could therefore offer a significant opportunity to bridge the gap between learning the methods of curation effectively and empowering the scientific community with high-quality, reusable repeat libraries. CONCLUSIONS: The collaborative manual curation of TEs from two tardigrade species, for which there were no TE libraries available, resulted in the successful characterization of hundreds of new and diverse TEs in a reasonable time frame. Our crowd-sourcing setting can be used as a teaching reference guide for similar projects: A hidden treasure awaits discovery within non-model organisms.

2.
Commun Biol ; 4(1): 1096, 2021 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-34535758

RESUMEN

The marbled crayfish (Procambarus virginalis) is a triploid and parthenogenetic freshwater crayfish species that has colonized diverse habitats around the world. Previous studies suggested that the clonal marbled crayfish population descended as recently as 25 years ago from a single specimen of P. fallax, the sexually reproducing parent species. However, the genetic, phylogeographic, and mechanistic origins of the species have remained enigmatic. We have now constructed a new genome assembly for P. virginalis to support a detailed phylogeographic analysis of the diploid parent species, Procambarus fallax. Our results strongly suggest that both parental haplotypes of P. virginalis were inherited from the Everglades subpopulation of P. fallax. Comprehensive whole-genome sequencing also detected triploid specimens in the same subpopulation, which either represent evolutionarily important intermediate genotypes or independent parthenogenetic lineages arising among the sexual parent population. Our findings thus clarify the geographic origin of the marbled crayfish and identify potential mechanisms of parthenogenetic speciation.


Asunto(s)
Astacoidea/genética , Especiación Genética , Genoma , Genotipo , Filogeografía , Animales , Evolución Biológica , Partenogénesis
3.
Philos Trans R Soc Lond B Biol Sci ; 376(1825): 20200166, 2021 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-33813896

RESUMEN

Mollusca are the second largest and arguably most diverse phylum of the animal kingdom. This is in sharp contrast to our very limited knowledge concerning epigenetic mechanisms including DNA methylation in this invertebrate group. Here, we inferred DNA methylation patterns by analysing the normalized dinucleotide CG content in protein-coding sequences and identified DNA methyltransferases (DNMT1 and 3) in published transcriptomes and genomes of 140 species across all eight classes of molluscs. Given the evolutionary age and morphological diversity of molluscs, we expected to find evidence for diverse methylation patterns. Our inferences suggest that molluscs possess substantial levels of DNA methylation in gene bodies as a rule. Yet, we found deviations from this general picture with regard to (i) the CpG observed/expected distributions indicating a reduction in DNA methylation in certain groups and (ii) the completeness of the DNMT toolkit. Reductions were evident in Caudofoveata, Solenogastres, Polyplacophora, Monoplacophora, as well as Scaphopoda. Heterobranchia and Oegopsida were remarkable as they lacked DNMT3, usually responsible for de novo methylation, yet showed signs of DNA methylation. Our survey may serve as guidance for direct empirical analyses of DNA methylation in molluscs. This article is part of the Theo Murphy meeting issue 'Molluscan genomics: broad insights and future directions for a neglected phylum'.


Asunto(s)
Metilación de ADN , Moluscos/genética , Animales
4.
Genome Biol Evol ; 10(4): 1185-1197, 2018 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-29697817

RESUMEN

It has been experimentally shown that DNA methylation is involved in the regulation of gene expression and the silencing of transposable element activity in eukaryotes. The variable levels of DNA methylation among different insect species indicate an evolutionarily flexible role of DNA methylation in insects, which due to a lack of comparative data is not yet well-substantiated. Here, we use computational methods to trace signatures of DNA methylation across insects by analyzing transcriptomic and genomic sequence data from all currently recognized insect orders. We conclude that: 1) a functional methylation system relying exclusively on DNA methyltransferase 1 is widespread across insects. 2) DNA methylation has potentially been lost or extremely reduced in species belonging to springtails (Collembola), flies and relatives (Diptera), and twisted-winged parasites (Strepsiptera). 3) Holometabolous insects display signs of reduced DNA methylation levels in protein-coding sequences compared with hemimetabolous insects. 4) Evolutionarily conserved insect genes associated with housekeeping functions tend to display signs of heavier DNA methylation in comparison to the genomic/transcriptomic background. With this comparative study, we provide the much needed basis for experimental and detailed comparative analyses required to gain a deeper understanding on the evolution and function of DNA methylation in insects.


Asunto(s)
Metilación de ADN/genética , Evolución Molecular , Holometabola/genética , Insectos/genética , Animales , Artrópodos/genética , Genoma/genética , Holometabola/metabolismo , Insectos/metabolismo , Filogenia , Alineación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...