Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Genome Res ; 29(10): 1659-1672, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31515287

RESUMEN

Induction and reversal of chromatin silencing is critical for successful development, tissue homeostasis, and the derivation of induced pluripotent stem cells (iPSCs). X-Chromosome inactivation (XCI) and reactivation (XCR) in female cells represent chromosome-wide transitions between active and inactive chromatin states. Although XCI has long been studied, providing important insights into gene regulation, the dynamics and mechanisms underlying the reversal of stable chromatin silencing of X-linked genes are much less understood. Here, we use allele-specific transcriptomics to study XCR during mouse iPSC reprogramming in order to elucidate the timing and mechanisms of chromosome-wide reversal of gene silencing. We show that XCR is hierarchical, with subsets of genes reactivating early, late, and very late during reprogramming. Early genes are activated before the onset of late pluripotency genes activation. Early genes are located genomically closer to genes that escape XCI, unlike genes reactivating late. Early genes also show increased pluripotency transcription factor (TF) binding. We also reveal that histone deacetylases (HDACs) restrict XCR in reprogramming intermediates and that the severe hypoacetylation state of the inactive X Chromosome (Xi) persists until late reprogramming stages. Altogether, these results reveal the timing of transcriptional activation of monoallelically repressed genes during iPSC reprogramming, and suggest that allelic activation involves the combined action of chromatin topology, pluripotency TFs, and chromatin regulators. These findings are important for our understanding of gene silencing, maintenance of cell identity, reprogramming, and disease.


Asunto(s)
Reprogramación Celular/genética , Células Madre Pluripotentes Inducidas/citología , ARN Largo no Codificante/genética , Inactivación del Cromosoma X/genética , Animales , Cromatina/genética , Femenino , Silenciador del Gen , Genes Ligados a X/genética , Histona Desacetilasas/genética , Ratones , Activación Transcripcional/genética , Cromosoma X/genética
2.
J Cell Sci ; 132(20)2019 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-31519808

RESUMEN

Reprogramming to induced pluripotency induces the switch of somatic cell identity to induced pluripotent stem cells (iPSCs). However, the mediators and mechanisms of reprogramming remain largely unclear. To elucidate the mediators and mechanisms of reprogramming, we used a siRNA-mediated knockdown approach for selected candidate genes during the conversion of somatic cells into iPSCs. We identified Tox4 as a novel factor that modulates cell fate through an assay that determined the efficiency of iPSC reprogramming. We found that Tox4 is needed early in reprogramming to efficiently generate early reprogramming intermediates, irrespective of the reprogramming conditions used. Tox4 enables proper exogenous reprogramming factor expression, and the closing and opening of putative somatic and pluripotency enhancers early during reprogramming, respectively. We show that the TOX4 protein assembles into a high molecular form. Moreover, Tox4 is also required for the efficient conversion of fibroblasts towards the neuronal fate, suggesting a broader role of Tox4 in modulating cell fate. Our study reveals Tox4 as a novel transcriptional modulator of cell fate that mediates reprogramming from the somatic state to the pluripotent and neuronal fate.This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Reprogramación Celular , Fibroblastos/metabolismo , Proteínas del Grupo de Alta Movilidad/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Células-Madre Neurales/metabolismo , Animales , Línea Celular , Fibroblastos/citología , Proteínas del Grupo de Alta Movilidad/genética , Células Madre Pluripotentes Inducidas/citología , Ratones , Células-Madre Neurales/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...