Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 23(9)2022 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-35563013

RESUMEN

Myotonic dystrophy type 1 (DM1) is the most common muscular dystrophy affecting many different body tissues, predominantly skeletal and cardiac muscles and the central nervous system. The expansion of CTG repeats in the DM1 protein-kinase (DMPK) gene is the genetic cause of the disease. The pathogenetic mechanisms are mainly mediated by the production of a toxic expanded CUG transcript from the DMPK gene. With the availability of new knowledge, disease models, and technical tools, much progress has been made in the discovery of altered pathways and in the potential of therapeutic intervention, making the path to the clinic a closer reality. In this review, we describe and discuss the molecular therapeutic strategies for DM1, which are designed to directly target the CTG genomic tract, the expanded CUG transcript or downstream signaling molecules.


Asunto(s)
Distrofia Miotónica , Edición Génica , Humanos , Distrofia Miotónica/tratamiento farmacológico , Distrofia Miotónica/genética , Proteína Quinasa de Distrofia Miotónica/genética , Proteína Quinasa de Distrofia Miotónica/metabolismo , Expansión de Repetición de Trinucleótido/genética
2.
Mol Ther Nucleic Acids ; 27: 184-199, 2022 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-34976437

RESUMEN

CRISPR/Cas9-mediated therapeutic gene editing is a promising technology for durable treatment of incurable monogenic diseases such as myotonic dystrophies. Gene-editing approaches have been recently applied to in vitro and in vivo models of myotonic dystrophy type 1 (DM1) to delete the pathogenic CTG-repeat expansion located in the 3' untranslated region of the DMPK gene. In DM1-patient-derived cells removal of the expanded repeats induced beneficial effects on major hallmarks of the disease with reduction in DMPK transcript-containing ribonuclear foci and reversal of aberrant splicing patterns. Here, we set out to excise the triplet expansion in a time-restricted and cell-specific fashion to minimize the potential occurrence of unintended events in off-target genomic loci and select for the target cell type. To this aim, we employed either a ubiquitous promoter-driven or a muscle-specific promoter-driven Cas9 nuclease and tetracycline repressor-based guide RNAs. A dual-vector approach was used to deliver the CRISPR/Cas9 components into DM1 patient-derived cells and in skeletal muscle of a DM1 mouse model. In this way, we obtained efficient and inducible gene editing both in proliferating cells and differentiated post-mitotic myocytes in vitro as well as in skeletal muscle tissue in vivo.

3.
Comput Struct Biotechnol J ; 19: 51-61, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33363709

RESUMEN

Myotonic Dystrophy type 1 (DM1) is an incurable neuromuscular disorder caused by toxic DMPK transcripts that carry CUG repeat expansions in the 3' untranslated region (3'UTR). The intrinsic complexity and lack of crystallographic data makes noncoding RNA regions challenging targets to study in the field of drug discovery. In DM1, toxic transcripts tend to stall in the nuclei forming complex inclusion bodies called foci and sequester many essential alternative splicing factors such as Muscleblind-like 1 (MBNL1). Most DM1 phenotypic features stem from the reduced availability of free MBNL1 and therefore many therapeutic efforts are focused on recovering its normal activity. For that purpose, herein we present pyrido[2,3-d]pyrimidin-7-(8H)-ones, a privileged scaffold showing remarkable biological activity against many targets involved in human disorders including cancer and viral diseases. Their combination with a flexible linker meets the requirements to stabilise DM1 toxic transcripts, and therefore, enabling the release of MBNL1. Therefore, a set of novel pyrido[2,3-d]pyrimidin-7-(8H)-ones derivatives (1a-e) were obtained using click chemistry. 1a exerted over 20% MBNL1 recovery on DM1 toxic RNA activity in primary cell biology studies using patient-derived myoblasts. 1a promising anti DM1 activity may lead to subsequent generations of ligands, highlighting a new affordable treatment against DM1.

4.
Cell Death Dis ; 9(7): 729, 2018 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-29955039

RESUMEN

Myotonic dystrophy type 1 (DM1) is a multi-systemic disorder caused by abnormally expanded stretches of CTG DNA triplets in the DMPK gene, leading to mutated-transcript RNA-toxicity. MicroRNAs (miRNAs) are short non-coding RNAs that, after maturation, are loaded onto the RISC effector complex that destabilizes target mRNAs and represses their translation. In DM1 muscle biopsies not only the expression, but also the intracellular localization of specific miRNAs is disrupted, leading to the dysregulation of the relevant mRNA targets. To investigate the functional alterations of the miRNA/target interactions in DM1, we analyzed by RNA-sequencing the RISC-associated RNAs in skeletal muscle biopsies derived from DM1 patients and matched controls. The mRNAs found deregulated in DM1 biopsies were involved in pathways and functions relevant for the disease, such as energetic metabolism, calcium signaling, muscle contraction and p53-dependent apoptosis. Bioinformatic analysis of the miRNA/mRNA interactions based on the RISC enrichment profiles, identified 24 miRNA/mRNA correlations. Following validation in 21 independent samples, we focused on the couple miR-29c/ASB2 because of the role of miR-29c in fibrosis (a feature of late-stage DM1 patients) and of ASB2 in the regulation of muscle mass. Luciferase reporter assay confirmed the direct interaction between miR-29c and ASB2. Moreover, decreased miR-29c and increased ASB2 levels were verified also in immortalized myogenic cells and primary fibroblasts, derived from biopsies of DM1 patients and controls. CRISPR/Cas9-mediated deletion of CTG expansions rescued normal miR-29c and ASB2 levels, indicating a direct link between the mutant repeats and the miRNA/target expression. In conclusion, functionally relevant miRNA/mRNA interactions were identified in skeletal muscles of DM1 patients, highlighting the dysfunction of miR-29c and ASB2.


Asunto(s)
Regulación de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , MicroARNs/genética , Distrofia Miotónica/genética , Complejo Silenciador Inducido por ARN/metabolismo , Proteínas Supresoras de la Señalización de Citocinas/genética , Humanos , MicroARNs/metabolismo , Músculo Esquelético/metabolismo , Mioblastos/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Supresoras de la Señalización de Citocinas/metabolismo
5.
Mol Ther Nucleic Acids ; 9: 337-348, 2017 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-29246312

RESUMEN

Myotonic dystrophy type 1 (DM1) is the most common adult-onset muscular dystrophy, characterized by progressive myopathy, myotonia, and multi-organ involvement. This dystrophy is an inherited autosomal dominant disease caused by a (CTG)n expansion within the 3' untranslated region of the DMPK gene. Expression of the mutated gene results in production of toxic transcripts that aggregate as nuclear foci and sequester RNA-binding proteins, resulting in mis-splicing of several transcripts, defective translation, and microRNA dysregulation. No effective therapy is yet available for treatment of the disease. In this study, myogenic cell models were generated from myotonic dystrophy patient-derived fibroblasts. These cells exhibit typical disease-associated ribonuclear aggregates, containing CUG repeats and muscleblind-like 1 protein, and alternative splicing alterations. We exploited these cell models to develop new gene therapy strategies aimed at eliminating the toxic mutant repeats. Using the CRISPR/Cas9 gene-editing system, the repeat expansions were removed, therefore preventing nuclear foci formation and splicing alterations. Compared with the previously reported strategies of inhibition/degradation of CUG expanded transcripts by various techniques, the advantage of this approach is that affected cells can be permanently reverted to a normal phenotype.

6.
J Neurol Sci ; 360: 78-83, 2016 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-26723978

RESUMEN

The thyroid transcription factor 1 (TTF-1) is encoded, on chromosome 14q13, by the gene termed TITF-1/NKX2.1. Mutations in this gene have been associated with chorea, hypothyroidism, and lung disease, all included in the "brain-thyroid-lung syndrome." We here describe two cases of novel missense mutations [NM_003317.3:c.516G>T and c.623G>C resulting in p.(Gln172His) and p.(Trp208Ser), respectively] in TITF-1/NKX2-1 in non-consanguineous patients. We provide a functional study of the role of the two mutations on the TTF-1 ability to bind DNA and to trans-activate both thyroid and lung specific gene promoters. Our results confirm the difficulty to correlate the TTF-1 activity with the clinical phenotype of affected patients and highlight the need to increase the limited knowledge we have on the activity of TTF-1 in neuronal cells.


Asunto(s)
Corea/genética , Mutación Missense , Proteínas Nucleares/genética , Factores de Transcripción/genética , Adulto , Niño , Femenino , Humanos , Masculino , Fenotipo , Regiones Promotoras Genéticas , Factor Nuclear Tiroideo 1
7.
Neuromolecular Med ; 16(2): 415-30, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24492999

RESUMEN

The neurotrophins Ngf, Bdnf, NT-3, NT4-5 have key roles in development, survival, and plasticity of neuronal cells. Their action involves broad gene expression changes at the level of transcription and translation. MicroRNAs (miRs)-small RNA molecules that control gene expression post-transcriptionally-are increasingly implicated in regulating development and plasticity of neural cells. Using PC12 cells as a model system, we show that Ngf modulates changes in expression of a variety of microRNAs, including miRs known to be modulated by neurotrophins-such as the miR-212/132 cluster-and several others, such as miR-21, miR-29c, miR-30c, miR-93, miR-103, miR-207, miR-691, and miR-709. Pathway analysis indicates that Ngf-modulated miRs may regulate many protein components of signaling pathways involved in neuronal development and disease. In particular, we show that miR-21 enhances neurotrophin signaling and controls neuronal differentiation induced by Ngf. Notably, in a situation mimicking neurodegeneration-differentiated neurons deprived of Ngf-this microRNA is able to preserve the neurite network and to support viability of the neurons. These findings uncover a broad role of microRNAs in regulating neurotrophin signaling and suggest that aberrant expression of one or more Ngf-modulated miRs may be involved in neurodegenerative diseases.


Asunto(s)
MicroARNs/fisiología , Factor de Crecimiento Nervioso/fisiología , Neuronas/patología , Animales , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/fisiología , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , MicroARNs/biosíntesis , MicroARNs/genética , Neuritas/ultraestructura , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/metabolismo , Neurogénesis/fisiología , Neuronas/metabolismo , Células PC12 , ARN Neoplásico/biosíntesis , ARN Neoplásico/genética , Ratas , Reacción en Cadena en Tiempo Real de la Polimerasa , Transducción de Señal/genética , Transducción de Señal/fisiología
8.
Mol Cell Endocrinol ; 323(2): 215-23, 2010 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-20211691

RESUMEN

TTF-1/Nkx2.1 is a homeodomain-containing transcription factor required for the proper development of ventral forebrain, including some structures of the hypothalamus. TTF-1/Nkx2.1 remains expressed in the hypothalamus after birth and it plays a crucial role during sexual development. To identify putative TTF-1/Nkx2.1 target genes in GnRH neurons, we have studied the gene expression profile of the GT1-7 cells exogenously expressing TTF-1/Nkx2.1 coding gene. Our transcriptome analysis confirms that TTF-1/Nkx2.1 is involved in neuron morphogenesis and differentiation. Many of the newly identified TTF-1/Nkx2.1 target genes have a direct involvement with the central regulation of sexual maturity. In particular, we have identified Sparc as a gene directly regulated by TTF-1/Nkx2.1 at the promoter level. To further support the role of TTF-1 in GnRH neurons, we show that Sparc is involved in the regulation of the GnRH secretion in GT1-7 cells.


Asunto(s)
Línea Celular Transformada , Regulación de la Expresión Génica , Hormona Liberadora de Gonadotropina/metabolismo , Proteínas Nucleares/metabolismo , Factores de Transcripción/metabolismo , Animales , Humanos , Análisis por Micromatrices , Datos de Secuencia Molecular , Proteínas Nucleares/genética , Factor Nuclear Tiroideo 1 , Factores de Transcripción/genética
9.
J Neurol Sci ; 264(1-2): 56-62, 2008 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-17765926

RESUMEN

Benign hereditary chorea (BHC) is an autosomal dominant disorder of early onset characterised by non progressive choreic movements with normal cognitive function occasionally associated with hypothyroidism and respiratory problems. Numerous pieces of evidence link BHC with TITF-1/NKX2.1 gene mutations. We studied a patient with a familial benign hereditary chorea and normal thyroid and respiratory function. Sequence analysis of TITF-1 revealed the presence of a heterozygous C>T substitution at nucleotide 532, predicted to change an arginine (CGA) with a stop codon (TGA) at position 178 (R178X). A functional analysis shows that the mutated TTF-1 is not binding DNA, nor activating the canonical thyroid target gene promoter or interfering with the ability of wild type TTF-1 to activate transcription. In addition, the mutated protein is predominantly cytoplasmic, rather than nuclear as in the case of the wild type TTF-1. Thus, we have identified a new mutation in the TTF-1 coding gene in a patient with benign hereditary chorea. The results show that the mutation leads to a haploinsufficiency of TITF-1 and opens the question of genotype/phenotype correlation.


Asunto(s)
Corea/genética , Corea/metabolismo , Predisposición Genética a la Enfermedad/genética , Mutación/genética , Proteínas Nucleares/genética , Factores de Transcripción/genética , Animales , Encéfalo/metabolismo , Encéfalo/fisiopatología , Química Encefálica/genética , Núcleo Celular/genética , Corea/fisiopatología , Codón sin Sentido/genética , Citoplasma/genética , Análisis Mutacional de ADN , Inglaterra , Femenino , Marcadores Genéticos/genética , Genotipo , Haplotipos/genética , Heterocigoto , Humanos , Lactante , Fenotipo , Mutación Puntual/genética , Ratas , Factor Nuclear Tiroideo 1
10.
Oncogene ; 24(47): 6993-7001, 2005 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-16007137

RESUMEN

Control of cell proliferation and differentiation by the retinoblastoma protein (pRb) depends on its interactions with key cellular substrates. Available data indicate that pRb and the transcription factor Pax 8 play a crucial role in the differentiation of thyroid follicular cells. In this study, we show that pRb takes part in the complex assembled on the thyroperoxidase gene promoter acting as a transcriptional coactivator of Pax 8. Accordingly, pRb interacts with and potentiates Pax 8 transcriptional activity. In addition, we show that the downregulation of pRb gene expression, in thyrocytes, through RNA interference results in a reduction of the thyroperoxidase gene promoter activity mediated by the Pax 8-binding site. In agreement with these results and with the ability of the adenoviral protein E1A to bind pRb, we show that E1A downregulates Pax 8 activity and that such inhibition requires the E1A-Rb interaction. Furthermore, we show that the Pax 8/pRb synergy plays a role on the sodium/iodide symporter gene expression as well.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Regulación de la Expresión Génica , Yoduro Peroxidasa/genética , Proteínas Nucleares/metabolismo , Regiones Promotoras Genéticas , Proteína de Retinoblastoma/metabolismo , Transactivadores/fisiología , Proteínas E1A de Adenovirus/metabolismo , Sitios de Unión , Células Cultivadas , Inmunoprecipitación de Cromatina , Proteínas de Unión al ADN/genética , Glutatión Transferasa/genética , Glutatión Transferasa/metabolismo , Humanos , Proteínas Nucleares/genética , Factor de Transcripción PAX8 , Factores de Transcripción Paired Box , Unión Proteica , Mapeo de Interacción de Proteínas , Interferencia de ARN , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Proteína de Retinoblastoma/antagonistas & inhibidores , Proteína de Retinoblastoma/genética , Simportadores/metabolismo , Glándula Tiroides/citología , Glándula Tiroides/metabolismo , Transactivadores/genética , Transactivadores/metabolismo , Activación Transcripcional
11.
Oncogene ; 22(51): 8302-15, 2003 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-14614454

RESUMEN

The conversion of skeletal myoblasts to terminally differentiated myocytes is negatively controlled by several growth factors and oncoproteins. In this study, we have investigated the molecular mechanisms by which v-Src, a prototypic tyrosine kinase, perturbs myogenesis in primary avian myoblasts and in established murine C2C12 satellite cells. We determined the expression levels of the cell cycle regulators pRb, cyclin D1 and D3 and cyclin-dependent kinase inhibitors p21 and p27 in v-Src-transformed myoblasts and found that, in contrast to myogenin, they are normally modulated by differentiative cues, implying that v-Src affects myogenesis independent of cell proliferation. We then examined the levels of expression, DNA-binding ability and transcription-activation potentials of myogenic regulatory factors in transformed myoblasts and in myotubes after reactivation of a temperature-sensitive allele of v-Src. Our results reveal two distinct potential modes of repression targeted to myogenic factors. On the one hand, we show that v-Src reversibly inhibits the expression of MyoD and myogenin in C2C12 cells and of myogenin in quail myoblasts. Remarkably, these loci become resistant to activation of the kinase in the postmitotic compartment. On the other hand, we demonstrate that v-Src efficiently inhibits muscle gene expression by repressing the transcriptional activity of myogenic factors without affecting MyoD DNA-binding activity. Indeed, forced expression of MyoD and myogenin allows terminal differentiation of transformed myoblasts. Finally, we found that ectopic expression of the coactivator p300 restores transcription from extrachromosomal muscle-specific promoters.


Asunto(s)
Diferenciación Celular/fisiología , Músculo Esquelético/metabolismo , Proteína Oncogénica pp60(v-src)/fisiología , Transactivadores/metabolismo , Animales , Secuencia de Bases , División Celular/fisiología , Línea Celular Transformada , ADN/metabolismo , Cartilla de ADN , Ratones , Músculo Esquelético/citología , Proteína MioD/metabolismo , Proteína Oncogénica pp60(v-src)/metabolismo , Codorniz
12.
Exp Cell Res ; 279(1): 100-10, 2002 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-12213218

RESUMEN

In Balb 3T3 murine fibroblasts infected with retroviruses carrying the v-src oncogene, treatment with the glucocorticoid hormone dexamethasone induces a 10-fold increase in the number of transformed foci and of anchorage-independent colonies. In contrast, in NIH-3T3-infected cells the number of foci and of colonies growing in soft agar is considerably reduced by the addition of the hormone. The effect of dexamethasone on both Balb 3T3 and NIH 3T3 cells is dose-dependent and mediated by specific receptors. The expression of glucocorticoid receptors as well as transactivation of a mouse mammary tumor virus promoter in the presence of dexamethasone is comparable in the two cell lines. Dexamethasone does not change the expression and kinase activity of v-Src proteins either in freshly infected Balb 3T3 and NIH 3T3 cells or in morphologically normal clones or in transformed foci derived from infected Balb 3T3 cells stably expressing v-Src. However, in cocultivation assays of phenotypically normal clones of v-Src expressing Balb 3T3 cells mixed with a large excess of parental Balb 3T3 cells, the hormone is able to rescue the ability to form transformed foci of these otherwise normal cells. The present data point out a new role of glucocorticoid hormones in controlling transformation in a cell-specific manner through epigenetic mechanisms.


Asunto(s)
Transformación Celular Viral/efectos de los fármacos , Dexametasona/farmacología , Glucocorticoides/farmacología , Proteína Oncogénica pp60(v-src)/antagonistas & inhibidores , Proteína Oncogénica pp60(v-src)/farmacología , Células 3T3 , Animales , División Celular/efectos de los fármacos , Línea Celular , Células Clonales , Técnicas de Cocultivo , Relación Dosis-Respuesta a Droga , Cinética , Ratones , Proteína Oncogénica pp60(v-src)/metabolismo , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...