Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Brain ; 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38574200

RESUMEN

Degeneration of dopaminergic neurons in the substantia nigra and their striatal axon terminals causes cardinal motor symptoms of Parkinson's disease. In idiopathic cases, high levels of mitochondrial DNA alterations leading to mitochondrial dysfunction are a central feature of these vulnerable neurons. Here we present a mouse model expressing the K320E-variant of the mitochondrial helicase Twinkle in dopaminergic neurons, leading to accelerated mitochondrial DNA mutations. These K320E-TwinkleDaN mice showed normal motor function at 20 months of age, although ∼70% of nigral dopaminergic neurons had perished. Remaining neurons still preserved ∼75% of axon terminals in the dorsal striatum and enabled normal dopamine release. Transcriptome analysis and viral tracing confirmed compensatory axonal sprouting of the surviving neurons. We conclude that a small population of substantia nigra dopaminergic neurons is able to adapt to the accumulation of mitochondrial DNA mutations and maintain motor control.

2.
Cell Death Dis ; 15(3): 203, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38467609

RESUMEN

Organelles form membrane contact sites between each other, allowing for the transfer of molecules and signals. Mitochondria-endoplasmic reticulum (ER) contact sites (MERCS) are cellular subdomains characterized by close apposition of mitochondria and ER membranes. They have been implicated in many diseases, including neurodegenerative, metabolic, and cardiac diseases. Although MERCS have been extensively studied, much remains to be explored. To uncover novel regulators of MERCS, we conducted a genome-wide, flow cytometry-based screen using an engineered MERCS reporter cell line. We found 410 genes whose downregulation promotes MERCS and 230 genes whose downregulation decreases MERCS. From these, 29 genes were selected from each population for arrayed screening and 25 were validated from the high population and 13 from the low population. GET4 and BAG6 were highlighted as the top 2 genes that upon suppression increased MERCS from both the pooled and arrayed screens, and these were subjected to further investigation. Multiple microscopy analyses confirmed that loss of GET4 or BAG6 increased MERCS. GET4 and BAG6 were also observed to interact with the known MERCS proteins, inositol 1,4,5-trisphosphate receptors (IP3R) and glucose-regulated protein 75 (GRP75). In addition, we found that loss of GET4 increased mitochondrial calcium uptake upon ER-Ca2+ release and mitochondrial respiration. Finally, we show that loss of GET4 rescues motor ability, improves lifespan and prevents neurodegeneration in a Drosophila model of Alzheimer's disease (Aß42Arc). Together, these results suggest that GET4 is involved in decreasing MERCS and that its loss is neuroprotective.


Asunto(s)
Sistemas CRISPR-Cas , Membranas Asociadas a Mitocondrias , Sistemas CRISPR-Cas/genética , Mitocondrias/genética , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Retículo Endoplásmico/genética , Retículo Endoplásmico/metabolismo , Calcio/metabolismo
3.
Nat Commun ; 15(1): 2142, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38459070

RESUMEN

Neuronal mitochondria play important roles beyond ATP generation, including Ca2+ uptake, and therefore have instructive roles in synaptic function and neuronal response properties. Mitochondrial morphology differs significantly between the axon and dendrites of a given neuronal subtype, but in CA1 pyramidal neurons (PNs) of the hippocampus, mitochondria within the dendritic arbor also display a remarkable degree of subcellular, layer-specific compartmentalization. In the dendrites of these neurons, mitochondria morphology ranges from highly fused and elongated in the apical tuft, to more fragmented in the apical oblique and basal dendritic compartments, and thus occupy a smaller fraction of dendritic volume than in the apical tuft. However, the molecular mechanisms underlying this striking degree of subcellular compartmentalization of mitochondria morphology are unknown, precluding the assessment of its impact on neuronal function. Here, we demonstrate that this compartment-specific morphology of dendritic mitochondria requires activity-dependent, Ca2+ and Camkk2-dependent activation of AMPK and its ability to phosphorylate two direct effectors: the pro-fission Drp1 receptor Mff and the recently identified anti-fusion, Opa1-inhibiting protein, Mtfr1l. Our study uncovers a signaling pathway underlying the subcellular compartmentalization of mitochondrial morphology in dendrites of neurons in vivo through spatially precise and activity-dependent regulation of mitochondria fission/fusion balance.


Asunto(s)
Neuronas , Células Piramidales , Neuronas/metabolismo , Células Piramidales/fisiología , Hipocampo , Axones/metabolismo , Mitocondrias/metabolismo , Dendritas/fisiología
4.
Life Sci Alliance ; 7(1)2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37931956

RESUMEN

Mitochondria interact with the ER at structurally and functionally specialized membrane contact sites known as mitochondria-ER contact sites (MERCs). Combining proximity labelling (BioID), co-immunoprecipitation, confocal microscopy and subcellular fractionation, we found that the ER resident SMP-domain protein ESYT1 was enriched at MERCs, where it forms a complex with the outer mitochondrial membrane protein SYNJ2BP. BioID analyses using ER-targeted, outer mitochondrial membrane-targeted, and MERC-targeted baits, confirmed the presence of this complex at MERCs and the specificity of the interaction. Deletion of ESYT1 or SYNJ2BP reduced the number and length of MERCs. Loss of the ESYT1-SYNJ2BP complex impaired ER to mitochondria calcium flux and provoked a significant alteration of the mitochondrial lipidome, most prominently a reduction of cardiolipins and phosphatidylethanolamines. Both phenotypes were rescued by reexpression of WT ESYT1 and an artificial mitochondria-ER tether. Together, these results reveal a novel function for ESYT1 in mitochondrial and cellular homeostasis through its role in the regulation of MERCs.


Asunto(s)
Calcio , Retículo Endoplásmico , Mitocondrias , Sinaptotagminas , Calcio/metabolismo , Retículo Endoplásmico/metabolismo , Homeostasis , Lípidos , Mitocondrias/metabolismo , Sinaptotagminas/metabolismo
5.
Nucleic Acids Res ; 51(21): e107, 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-37850644

RESUMEN

Mitochondrial DNA (mtDNA) encodes the core subunits for OXPHOS, essential in near-all eukaryotes. Packed into distinct foci (nucleoids) inside mitochondria, the number of mtDNA copies differs between cell-types and is affected in several human diseases. Currently, common protocols estimate per-cell mtDNA-molecule numbers by sequencing or qPCR from bulk samples. However, this does not allow insight into cell-to-cell heterogeneity and can mask phenotypical sub-populations. Here, we present mtFociCounter, a single-cell image analysis tool for reproducible quantification of nucleoids and other foci. mtFociCounter is a light-weight, open-source freeware and overcomes current limitations to reproducible single-cell analysis of mitochondrial foci. We demonstrate its use by analysing 2165 single fibroblasts, and observe a large cell-to-cell heterogeneity in nucleoid numbers. In addition, mtFociCounter quantifies mitochondrial content and our results show good correlation (R = 0.90) between nucleoid number and mitochondrial area, and we find nucleoid density is less variable than nucleoid numbers in wild-type cells. Finally, we demonstrate mtFociCounter readily detects differences in foci-numbers upon sample treatment, and applies to Mitochondrial RNA Granules and superresolution microscopy. mtFociCounter provides a versatile solution to reproducibly quantify cellular foci in single cells and our results highlight the importance of accounting for cell-to-cell variance and mitochondrial context in mitochondrial foci analysis.


Asunto(s)
ADN Mitocondrial , Mitocondrias , Humanos , ADN Mitocondrial/ultraestructura , Microscopía , Mitocondrias/ultraestructura , Análisis de la Célula Individual
6.
Nature ; 615(7952): 499-506, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36890229

RESUMEN

Mutations in fumarate hydratase (FH) cause hereditary leiomyomatosis and renal cell carcinoma1. Loss of FH in the kidney elicits several oncogenic signalling cascades through the accumulation of the oncometabolite fumarate2. However, although the long-term consequences of FH loss have been described, the acute response has not so far been investigated. Here we generated an inducible mouse model to study the chronology of FH loss in the kidney. We show that loss of FH leads to early alterations of mitochondrial morphology and the release of mitochondrial DNA (mtDNA) into the cytosol, where it triggers the activation of the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING)-TANK-binding kinase 1 (TBK1) pathway and stimulates an inflammatory response that is also partially dependent on retinoic-acid-inducible gene I (RIG-I). Mechanistically, we show that this phenotype is mediated by fumarate and occurs selectively through mitochondrial-derived vesicles in a manner that depends on sorting nexin 9 (SNX9). These results reveal that increased levels of intracellular fumarate induce a remodelling of the mitochondrial network and the generation of mitochondrial-derived vesicles, which allows the release of mtDNAin the cytosol and subsequent activation of the innate immune response.


Asunto(s)
ADN Mitocondrial , Fumaratos , Inmunidad Innata , Mitocondrias , Animales , Ratones , ADN Mitocondrial/metabolismo , Fumarato Hidratasa/genética , Fumarato Hidratasa/metabolismo , Fumaratos/metabolismo , Mitocondrias/enzimología , Mitocondrias/genética , Mitocondrias/metabolismo , Mitocondrias/patología , Riñón/enzimología , Riñón/metabolismo , Riñón/patología , Citosol/metabolismo
7.
Chembiochem ; 24(11): e202200774, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-36917207

RESUMEN

The targeting of bioactive molecules and probes to mitochondria can be achieved by coupling to the lipophilic triphenyl phosphonium (TPP) cation, which accumulates several hundred-fold within mitochondria in response to the mitochondrial membrane potential (Δψm ). Typically, a simple alkane links the TPP to its "cargo", increasing overall hydrophobicity. As it would be beneficial to enhance the water solubility of mitochondria-targeted compounds we explored the effects of replacing the alkyl linker with a polyethylene glycol (PEG). We found that the use of PEG led to compounds that were readily taken up by isolated mitochondria and by mitochondria inside cells. Within mitochondria the PEG linker greatly decreased adsorption of the TPP constructs to the matrix-facing face of the mitochondrial inner membrane. These findings will allow the distribution of mitochondria-targeted TPP compounds within mitochondria to be fine-tuned.


Asunto(s)
Mitocondrias , Polietilenglicoles , Interacciones Hidrofóbicas e Hidrofílicas , Compuestos Organofosforados/farmacología
9.
Elife ; 122023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36722855

RESUMEN

Mitochondrial dysfunction has been reported in obesity and insulin resistance, but primary genetic mitochondrial dysfunction is generally not associated with these, arguing against a straightforward causal relationship. A rare exception, recently identified in humans, is a syndrome of lower body adipose loss, leptin-deficient severe upper body adipose overgrowth, and insulin resistance caused by the p.Arg707Trp mutation in MFN2, encoding mitofusin 2. How the resulting selective form of mitochondrial dysfunction leads to tissue- and adipose depot-specific growth abnormalities and systemic biochemical perturbation is unknown. To address this, Mfn2R707W/R707W knock-in mice were generated and phenotyped on chow and high fat diets. Electron microscopy revealed adipose-specific mitochondrial morphological abnormalities. Oxidative phosphorylation measured in isolated mitochondria was unperturbed, but the cellular integrated stress response was activated in adipose tissue. Fat mass and distribution, body weight, and systemic glucose and lipid metabolism were unchanged, however serum leptin and adiponectin concentrations, and their secretion from adipose explants were reduced. Pharmacological induction of the integrated stress response in wild-type adipocytes also reduced secretion of leptin and adiponectin, suggesting an explanation for the in vivo findings. These data suggest that the p.Arg707Trp MFN2 mutation selectively perturbs mitochondrial morphology and activates the integrated stress response in adipose tissue. In mice, this does not disrupt most adipocyte functions or systemic metabolism, whereas in humans it is associated with pathological adipose remodelling and metabolic disease. In both species, disproportionate effects on leptin secretion may relate to cell autonomous induction of the integrated stress response.


Asunto(s)
Resistencia a la Insulina , Lipodistrofia , Humanos , Animales , Ratones , Leptina/metabolismo , Adiponectina/metabolismo , Tejido Adiposo/metabolismo , Obesidad/metabolismo , Hidrolasas/metabolismo , Lipodistrofia/genética , Lipodistrofia/metabolismo , Mitocondrias/metabolismo
10.
Mitochondrion ; 68: 60-71, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36402364

RESUMEN

Triphenylphosphonium (TPP) derivatives are commonly used to target chemical into mitochondria. We show that alkyl-TPP cause reversible, dose- and hydrophobicity-dependent alterations of mitochondrial morphology and function and a selective decrease of mitochondrial inner membrane proteins including subunits of the respiratory chain complexes, as well as components of the mitochondrial calcium uniporter complex. The treatment with alkyl-TPP resulted in the cleavage of the pro-fusion and cristae organisation regulator Optic atrophy-1. The structural and functional effects of alkyl-TPP were found to be reversible and not merely due to loss of membrane potential. A similar effect was observed with the mitochondria-targeted antioxidant MitoQ.


Asunto(s)
Antioxidantes , Mitocondrias , Mitocondrias/metabolismo , Antioxidantes/farmacología , Membranas Mitocondriales/metabolismo , Cationes/metabolismo , Cationes/farmacología , Compuestos Organofosforados/farmacología , Proteínas de la Membrana/metabolismo , Potencial de la Membrana Mitocondrial
11.
Sci Adv ; 8(45): eabo7956, 2022 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-36367943

RESUMEN

Mitochondria are dynamic organelles that undergo membrane remodeling events in response to metabolic alterations to generate an adequate mitochondrial network. Here, we investigated the function of mitochondrial fission regulator 1-like protein (MTFR1L), an uncharacterized protein that has been identified in phosphoproteomic screens as a potential AMP-activated protein kinase (AMPK) substrate. We showed that MTFR1L is an outer mitochondrial membrane-localized protein modulating mitochondrial morphology. Loss of MTFR1L led to mitochondrial elongation associated with increased mitochondrial fusion events and levels of the mitochondrial fusion protein, optic atrophy 1. Mechanistically, we show that MTFR1L is phosphorylated by AMPK, which thereby controls the function of MTFR1L in regulating mitochondrial morphology both in mammalian cell lines and in murine cortical neurons in vivo. Furthermore, we demonstrate that MTFR1L is required for stress-induced AMPK-dependent mitochondrial fragmentation. Together, these findings identify MTFR1L as a critical mitochondrial protein transducing AMPK-dependent metabolic changes through regulation of mitochondrial dynamics.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Dinámicas Mitocondriales , Animales , Ratones , Fosforilación , Proteínas Quinasas Activadas por AMP/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Proteínas de la Membrana/metabolismo , Mamíferos/metabolismo
12.
Redox Biol ; 55: 102429, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35961099

RESUMEN

Mitochondria-targeted H2S donors are thought to protect against acute ischemia-reperfusion (IR) injury by releasing H2S that decreases oxidative damage. However, the rate of H2S release by current donors is too slow to be effective upon administration following reperfusion. To overcome this limitation here we develop a mitochondria-targeted agent, MitoPerSulf that very rapidly releases H2S within mitochondria. MitoPerSulf is quickly taken up by mitochondria, where it reacts with endogenous thiols to generate a persulfide intermediate that releases H2S. MitoPerSulf is acutely protective against cardiac IR injury in mice, due to the acute generation of H2S that inhibits respiration at cytochrome c oxidase thereby preventing mitochondrial superoxide production by lowering the membrane potential. Mitochondria-targeted agents that rapidly generate H2S are a new class of therapy for the acute treatment of IR injury.

13.
Life Sci Alliance ; 5(11)2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35831024

RESUMEN

Mitochondria-ER contact sites (MERCs) orchestrate many important cellular functions including regulating mitochondrial quality control through mitophagy and mediating mitochondrial calcium uptake. Here, we identify and functionally characterize the Drosophila ortholog of the recently identified mammalian MERC protein, Pdzd8. We find that reducing pdzd8-mediated MERCs in neurons slows age-associated decline in locomotor activity and increases lifespan in Drosophila. The protective effects of pdzd8 knockdown in neurons correlate with an increase in mitophagy, suggesting that increased mitochondrial turnover may support healthy aging of neurons. In contrast, increasing MERCs by expressing a constitutive, synthetic ER-mitochondria tether disrupts mitochondrial transport and synapse formation, accelerates age-related decline in locomotion, and reduces lifespan. Although depletion of pdzd8 prolongs the survival of flies fed with mitochondrial toxins, it is also sufficient to rescue locomotor defects of a fly model of Alzheimer's disease expressing Amyloid ß42 (Aß42). Together, our results provide the first in vivo evidence that MERCs mediated by the tethering protein pdzd8 play a critical role in the regulation of mitochondrial quality control and neuronal homeostasis.


Asunto(s)
Péptidos beta-Amiloides , Proteínas de Drosophila , Drosophila melanogaster , Retículo Endoplásmico , Mitocondrias , Fragmentos de Péptidos , Enfermedad de Alzheimer , Péptidos beta-Amiloides/antagonistas & inhibidores , Péptidos beta-Amiloides/toxicidad , Animales , Senescencia Celular , Modelos Animales de Enfermedad , Proteínas de Drosophila/deficiencia , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citología , Drosophila melanogaster/efectos de los fármacos , Drosophila melanogaster/metabolismo , Drosophila melanogaster/fisiología , Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/metabolismo , Técnicas de Silenciamiento del Gen , Aptitud Genética , Locomoción/efectos de los fármacos , Longevidad/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Dinámicas Mitocondriales/efectos de los fármacos , Mitofagia/efectos de los fármacos , Neuronas/efectos de los fármacos , Fragmentos de Péptidos/antagonistas & inhibidores , Fragmentos de Péptidos/toxicidad
14.
Brain ; 145(9): 3095-3107, 2022 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-35718349

RESUMEN

The hereditary spastic paraplegias (HSP) are among the most genetically diverse of all Mendelian disorders. They comprise a large group of neurodegenerative diseases that may be divided into 'pure HSP' in forms of the disease primarily entailing progressive lower-limb weakness and spasticity, and 'complex HSP' when these features are accompanied by other neurological (or non-neurological) clinical signs. Here, we identified biallelic variants in the transmembrane protein 63C (TMEM63C) gene, encoding a predicted osmosensitive calcium-permeable cation channel, in individuals with hereditary spastic paraplegias associated with mild intellectual disability in some, but not all cases. Biochemical and microscopy analyses revealed that TMEM63C is an endoplasmic reticulum-localized protein, which is particularly enriched at mitochondria-endoplasmic reticulum contact sites. Functional in cellula studies indicate a role for TMEM63C in regulating both endoplasmic reticulum and mitochondrial morphologies. Together, these findings identify autosomal recessive TMEM63C variants as a cause of pure and complex HSP and add to the growing evidence of a fundamental pathomolecular role of perturbed mitochondrial-endoplasmic reticulum dynamics in motor neurone degenerative diseases.


Asunto(s)
Canales de Calcio , Mitocondrias , Paraplejía Espástica Hereditaria , Canales de Calcio/genética , Retículo Endoplásmico/genética , Humanos , Mitocondrias/patología , Mutación , Paraplejía Espástica Hereditaria/genética
15.
Cell Mol Life Sci ; 79(6): 327, 2022 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-35637383

RESUMEN

The architecture of mitochondria adapts to physiological contexts: while mitochondrial fragmentation is usually associated to quality control and cell death, mitochondrial elongation often enhances cell survival during stress. Understanding how these events are regulated is important to elucidate how mitochondrial dynamics control cell fate. Here, we show that the tyrosine kinase Src regulates mitochondrial morphology. Deletion of Src increased mitochondrial size and reduced cellular respiration independently of mitochondrial mass, mitochondrial membrane potential or ATP levels. Re-expression of Src targeted to the mitochondrial matrix, but not of Src targeted to the plasma membrane, rescued mitochondrial morphology in a kinase activity-dependent manner. These findings highlight a novel function for Src in the control of mitochondrial dynamics.


Asunto(s)
Mitocondrias , Familia-src Quinasas , Respiración de la Célula , Potencial de la Membrana Mitocondrial , Mitocondrias/metabolismo , Fosforilación , Familia-src Quinasas/genética , Familia-src Quinasas/metabolismo
16.
Exp Eye Res ; 213: 108793, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34656549

RESUMEN

Membrane contact sites (MCS) play crucial roles in cell physiology with dysfunction in several MCS proteins being linked with neurological and optic nerve diseases. Although there have been significant advances in imaging these interactions over the past two decades with advanced electron microscopy techniques, super-resolution imaging and proximity-dependent fluorescent reporters, a technique to observe and quantify MCS in mammalian optic nerve tissues has not yet been reported. We demonstrate for the first time that proximity ligation assay (PLA), a technique already used in mammalian cell lines, can be used as an efficient method of quantifying inter-organelle contact sites, namely mitochondria-endoplasmic reticulum (ER) and mitochondria-late-endosomes, in mammalian optic nerve tissues treated with adeno-associated virus (AAV) gene therapy with wild-type or phosphomimetic (active) protrudin. PLA utilises complementary single-stranded DNA oligomers bound to secondary antibodies that hybridise and complete a circular piece of DNA when the primary antibodies of interest interact. These interactions can be detected by amplifying the circular DNA and adding fluorescent probes. We show that PLA is a useful method that can be used to quantify MCS in optic nerve tissues. We have found that upregulation of protrudin with gene therapy significantly increases the number of mitochondria-ER and mitochondria-Rab7-late endosomes contact sites in optic nerves.


Asunto(s)
Bioensayo/métodos , Retículo Endoplásmico/metabolismo , Endosomas/metabolismo , Membranas Mitocondriales/metabolismo , Nervio Óptico/metabolismo , Animales , Sitios de Unión , Dependovirus/genética , Femenino , Expresión Génica , Terapia Genética , Vectores Genéticos , Proteínas Fluorescentes Verdes/genética , Ratones , Ratones Endogámicos C57BL , Microscopía Confocal , Orgánulos , Fijación del Tejido , Proteínas de Transporte Vesicular/genética
17.
Science ; 374(6565): eabe9977, 2021 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-34648346

RESUMEN

T cell receptor activation of naïve CD8+ T lymphocytes initiates their maturation into effector cytotoxic T lymphocytes (CTLs), which can kill cancer and virally infected cells. Although CTLs show an increased reliance on glycolysis upon acquisition of effector function, we found an essential requirement for mitochondria in target cell­killing. Acute mitochondrial depletion in USP30 (ubiquitin carboxyl-terminal hydrolase 30)­deficient CTLs markedly diminished killing capacity, although motility, signaling, and secretion were all intact. Unexpectedly, the mitochondrial requirement was linked to mitochondrial translation, inhibition of which impaired CTL killing. Impaired mitochondrial translation triggered attenuated cytosolic translation, precluded replenishment of secreted killing effectors, and reduced the capacity of CTLs to carry out sustained killing. Thus, mitochondria emerge as a previously unappreciated homeostatic regulator of protein translation required for serial CTL killing.


Asunto(s)
Citotoxicidad Inmunológica/inmunología , Mitocondrias/enzimología , Proteínas Mitocondriales/metabolismo , Linfocitos T Citotóxicos/inmunología , Tioléster Hidrolasas/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Movimiento Celular/genética , Células Cultivadas , Citotoxicidad Inmunológica/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/genética , Proteínas Mitocondriales/genética , Biosíntesis de Proteínas , Linfocitos T Citotóxicos/enzimología , Tioléster Hidrolasas/genética
19.
Nat Commun ; 12(1): 5404, 2021 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-34518526

RESUMEN

Inactivating mutations in SMARCA4 and concurrent epigenetic silencing of SMARCA2 characterize subsets of ovarian and lung cancers. Concomitant loss of these key subunits of SWI/SNF chromatin remodeling complexes in both cancers is associated with chemotherapy resistance and poor prognosis. Here, we discover that SMARCA4/2 loss inhibits chemotherapy-induced apoptosis through disrupting intracellular organelle calcium ion (Ca2+) release in these cancers. By restricting chromatin accessibility to ITPR3, encoding Ca2+ channel IP3R3, SMARCA4/2 deficiency causes reduced IP3R3 expression leading to impaired Ca2+ transfer from the endoplasmic reticulum to mitochondria required for apoptosis induction. Reactivation of SMARCA2 by a histone deacetylase inhibitor rescues IP3R3 expression and enhances cisplatin response in SMARCA4/2-deficient cancer cells both in vitro and in vivo. Our findings elucidate the contribution of SMARCA4/2 to Ca2+-dependent apoptosis induction, which may be exploited to enhance chemotherapy response in SMARCA4/2-deficient cancers.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Calcio/metabolismo , ADN Helicasas/genética , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Mitocondrias/metabolismo , Mutación , Proteínas Nucleares/genética , Factores de Transcripción/genética , Animales , Apoptosis/genética , Línea Celular Tumoral , ADN Helicasas/metabolismo , Perfilación de la Expresión Génica/métodos , Regulación Neoplásica de la Expresión Génica , Células HEK293 , Humanos , Transporte Iónico/genética , Masculino , Ratones Endogámicos NOD , Ratones Noqueados , Ratones SCID , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Proteínas Nucleares/metabolismo , Factores de Transcripción/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto/métodos
20.
Life (Basel) ; 11(5)2021 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-34064758

RESUMEN

The fact that >99% of mitochondrial proteins are encoded by the nuclear genome and synthesised in the cytosol renders the process of mitochondrial protein import fundamental for normal organelle physiology. In addition to this, the nuclear genome comprises most of the proteins required for respiratory complex assembly and function. This means that without fully functional protein import, mitochondrial respiration will be defective, and the major cellular ATP source depleted. When mitochondrial protein import is impaired, a number of stress response pathways are activated in order to overcome the dysfunction and restore mitochondrial and cellular proteostasis. However, prolonged impaired mitochondrial protein import and subsequent defective respiratory chain function contributes to a number of diseases including primary mitochondrial diseases and neurodegeneration. This review focuses on how the processes of mitochondrial protein translocation and respiratory complex assembly and function are interlinked, how they are regulated, and their importance in health and disease.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...