Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
mSphere ; 9(3): e0077423, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38426801

RESUMEN

Diabetic foot ulcers (DFUs) are the most common complications of diabetes resulting from hyperglycemia leading to ischemic hypoxic tissue and nerve damage. Staphylococcus aureus is the most frequently isolated bacteria from DFUs and causes severe necrotic infections leading to amputations with a poor 5-year survival rate. However, very little is known about the mechanisms by which S. aureus dominantly colonizes and causes severe disease in DFUs. Herein, we utilized a pressure wound model in diabetic TALLYHO/JngJ mice to reproduce ischemic hypoxic tissue damage seen in DFUs and demonstrated that anaerobic fermentative growth of S. aureus significantly increased the virulence and the severity of disease by activating two-component regulatory systems leading to expression of virulence factors. Our in vitro studies showed that supplementation of nitrate as a terminal electron acceptor promotes anaerobic respiration and suppresses the expression of S. aureus virulence factors through inactivation of two-component regulatory systems, suggesting potential therapeutic benefits by promoting anaerobic nitrate respiration. Our in vivo studies revealed that dietary supplementation of L-arginine (L-Arg) significantly attenuated the severity of disease caused by S. aureus in the pressure wound model by providing nitrate. Collectively, these findings highlight the importance of anaerobic fermentative growth in S. aureus pathogenesis and the potential of dietary L-Arg supplementation as a therapeutic to prevent severe S. aureus infection in DFUs.IMPORTANCES. aureus is the most common cause of infection in DFUs, often resulting in lower-extremity amputation with a distressingly poor 5-year survival rate. Treatment for S. aureus infections has largely remained unchanged for decades and involves tissue debridement with antibiotic therapy. With high levels of conservative treatment failure, recurrence of ulcers, and antibiotic resistance, a new approach is necessary to prevent lower-extremity amputations. Nutritional aspects of DFU treatment have largely been overlooked as there has been contradictory clinical trial evidence, but very few in vitro and in vivo modelings of nutritional treatment studies have been performed. Here we demonstrate that dietary supplementation of L-Arg in a diabetic mouse model significantly reduced duration and severity of disease caused by S. aureus. These findings suggest that L-Arg supplementation could be useful as a potential preventive measure against severe S. aureus infections in DFUs.


Asunto(s)
Diabetes Mellitus , Pie Diabético , Infecciones Estafilocócicas , Animales , Ratones , Staphylococcus aureus , Virulencia , Nitratos , Infecciones Estafilocócicas/complicaciones , Pie Diabético/tratamiento farmacológico , Pie Diabético/complicaciones , Pie Diabético/microbiología , Factores de Virulencia , Suplementos Dietéticos
2.
Cell Immunol ; 397-398: 104812, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38245915

RESUMEN

Cannabidiol (CBD) is a phytocannabinoid derived from Cannabis sativa that exerts anti-inflammatory mechanisms. CBD is being examined for its putative effects on the neuroinflammatory disease, multiple sclerosis (MS). One of the major immune mediators that propagates MS and its mouse model experimental autoimmune encephalomyelitis (EAE) are macrophages. Macrophages can polarize into an inflammatory phenotype (M1) or an anti-inflammatory phenotype (M2a). Therefore, elucidating the impact on macrophage polarization with CBD pre-treatment is necessary to understand its anti-inflammatory mechanisms. To study this effect, murine macrophages (RAW 264.7) were pre-treated with CBD (10 µM) or vehicle (ethanol 0.1 %) and were either left untreated (naive; cell media only), or stimulated under M1 (IFN-γ + lipopolysaccharide, LPS) or M2a (IL-4) conditions for 24 hr. Cells were analyzed for macrophage polarization markers, and supernatants were analyzed for cytokines and chemokines. Immunofluorescence staining was performed on M1-polarized cells for the metalloprotease, tumor necrosis factor-α-converting enzyme (TACE), as this enzyme is responsible for the secretion of TNF-α. Overall results showed that CBD decreased several markers associated with the M1 phenotype while exhibiting less effects on the M2a phenotype. Significantly, under M1 conditions, CBD increased the percentage of intracellular and surface TNF-α but decreased secreted TNF-α. This phenomenon might be mediated by TACE as staining showed that CBD sequestered TACE intracellularly. CBD also prevented RelA nuclear translocation. These results suggest that CBD may exert its anti-inflammatory effects by reducing M1 polarization and decreasing TNF-α secretion via inappropriate localization of TACE and RelA.


Asunto(s)
Cannabidiol , Encefalomielitis Autoinmune Experimental , Esclerosis Múltiple , Ratones , Animales , Factor de Necrosis Tumoral alfa/metabolismo , Cannabidiol/farmacología , Proteína ADAM17 , Citocinas/metabolismo , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Esclerosis Múltiple/tratamiento farmacológico , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico
3.
J Immunol ; 212(3): 421-432, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38108423

RESUMEN

Staphylococcal superantigens induce massive activation of T cells and inflammation, leading to toxic shock syndrome. Paradoxically, increasing evidence indicates that superantigens can also induce immunosuppression by promoting regulatory T cell (Treg) development. In this study, we demonstrate that stimulation strength plays a critical role in superantigen-mediated induction of immunosuppressive human CD4+CD25+FOXP3+ T cells. Suboptimal stimulation by a low dose (1 ng/ml) of staphylococcal enterotoxin C1 (SEC1) led to de novo generation of Treg-like CD4+CD25+FOXP3+ T cells with strong suppressive activity. In contrast, CD4+CD25+ T cells induced by optimal stimulation with high-dose SEC1 (1 µg/ml) were not immunosuppressive, despite high FOXP3 expression. Signal transduction pathway analysis revealed differential activation of the PI3K signaling pathway and expression of PTEN in optimal and suboptimal stimulation with SEC1. Additionally, we identified that FOXP3 isoforms in Treg-like cells from the suboptimal condition were located in the nucleus, whereas FOXP3 in nonsuppressive cells from the optimal condition localized in cytoplasm. Sequencing analysis of FOXP3 isoform transcripts identified five isoforms, including a FOXP3 isoform lacking partial exon 3. Overexpression of FOXP3 isoforms confirmed that both an exon 2-lacking isoform and a partial exon 3-lacking isoform confer suppressive activity. Furthermore, blockade of PI3K in optimal stimulation conditions led to induction of suppressive Treg-like cells with nuclear translocation of FOXP3, suggesting that PI3K signaling impairs induction of Tregs in a SEC1 dose-dependent manner. Taken together, these data demonstrate that the strength of activation signals determined by superantigen dose regulates subcellular localization of FOXP3 isoforms, which confers suppressive functionality.


Asunto(s)
Fosfatidilinositol 3-Quinasas , Superantígenos , Humanos , Fosfatidilinositol 3-Quinasas/metabolismo , Linfocitos T CD4-Positivos , Linfocitos T Reguladores , Subunidad alfa del Receptor de Interleucina-2/metabolismo , Enterotoxinas , Isoformas de Proteínas/metabolismo , Factores de Transcripción Forkhead/metabolismo
4.
J Immunol Methods ; 511: 113378, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36265578

RESUMEN

Macrophages are scavenger cells and a fundamental part of innate and adaptive immune responses, and they are important in wound repair and tissue remodeling. The functions of macrophages include engulfing and killing invading pathogens, processing and presenting antigens, initiation of inflammation, secreting cytokines and other inflammatory mediators, and participating in the maintenance and repair of tissues. Based on functional differences and surface and intracellular marker expression, macrophages can be generally divided into either M1 (inflammatory) or M2 (wound healing); the M2 type can be further divided into M2a, M2b, M2c, and M2d. However, due to the time, effort, and cost of establishing a panel of markers that could thoroughly assess polarization, the characterization of types and subtypes is usually done using three markers or fewer. This can lead to problems, because the expression of some of the most widely used polarization markers can be altered by commonly used inflammatory or immunological stimuli. We have developed and optimized an eleven-color polychromatic flow cytometric assay for macrophage subtype identification that prevents mischaracterization due to stimulus-induced changes in individual markers by using partially redundant markers for which at least one is not substantially affected by a commonly used inflammatory stimulus (LPS). We polarized 3 × 105 RAW 264.7 cells, a mouse macrophage cell line, with IFN-γ (± LPS), IL-4 or IL-10 to derive M1, M2a, or M2c macrophage subtypes, respectively. The TNF-α concentration in cell supernatants was tested by ELISA to verify polarization. Then polarized cells were labeled with the following antibodies and assessed by flow cytometry to identify marker expression: F4/80, Arginase 1, TLR4, CD86, VEGF, CD14, CD206, MHC Class II, and TNF-α (surface and internal). Here we have identified clear distinctions between macrophage subtypes using these markers, and we anticipate that this panel will help disclose more details of the macrophage's role in the immune response and will save investigators the time and cost usually required to identify appropriate antibodies that do not interfere with each other or lead to difficult color compensation issues.


Asunto(s)
Macrófagos , Factor de Necrosis Tumoral alfa , Animales , Ratones , Citometría de Flujo
5.
J Immunol ; 200(2): 669-680, 2018 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-29237775

RESUMEN

Superantigens (SAgs) produced by Staphylococcus aureus at high concentrations induce proliferation of T cells bearing specific TCR Vß sequences and massive cytokinemia that cause toxic shock syndrome. However, the biological relevance of SAgs produced at very low concentrations during asymptomatic colonization or chronic infections is not understood. In this study, we demonstrate that suboptimal stimulation of human PBMCs with a low concentration (1 ng/ml) of staphylococcal enterotoxin C1, at which half-maximal T cell proliferation was observed, induced CD8+CD25+ T cells expressing markers related to regulatory T cells (Tregs), such as IFN-γ, IL-10, TGF-ß, FOXP3, CD28, CTLA4, TNFR2, CD45RO, and HLA-DR. Importantly, these CD8+CD25+ T cells suppressed responder cell proliferation mediated in contact-dependent and soluble factor-dependent manners, involving galectin-1 and granzymes, respectively. In contrast, optimal stimulation of human PBMCs with a high concentration (1 µg/ml) of staphylococcal enterotoxin C1, at which maximal T cell proliferation was observed, also induced similar expression of markers related to Tregs, including FOXP3 in CD8+CD25+ cells, but these T cells were not functionally immunosuppressive. We further demonstrated that SAg-induced TCR Vß-restricted and MHC class II-restricted expansion of immunosuppressive CD8+CD25+ T cells is independent of CD4+ T cells. Our results suggest that the concentration of SAg strongly affects the functional characteristics of activated T cells, and low concentrations of SAg produced during asymptomatic colonization or chronic S. aureus infection induce immunosuppressive CD8+ Tregs, potentially promoting colonization, propagation, and invasion of S. aureus in the host.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Enterotoxinas/inmunología , Inmunomodulación , Staphylococcus aureus/inmunología , Subgrupos de Linfocitos T/inmunología , Linfocitos T Reguladores/inmunología , Adolescente , Adulto , Biomarcadores , Linfocitos T CD8-positivos/metabolismo , Citocinas/genética , Citocinas/metabolismo , Factores de Transcripción Forkhead/metabolismo , Genes Codificadores de la Cadena beta de los Receptores de Linfocito T/genética , Humanos , Inmunización , Inmunofenotipificación , Subunidad alfa del Receptor de Interleucina-2/metabolismo , Fenotipo , Subgrupos de Linfocitos T/metabolismo , Linfocitos T Reguladores/metabolismo , Adulto Joven
6.
Regul Toxicol Pharmacol ; 89: 200-214, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28736286

RESUMEN

T cell-dependent IgM antibody production and natural killer cell (NKC) activity were assessed in SD rats orally administered atrazine for 28 days to males (0, 6.5, 25, or 100 mg/kg/day) or females (0, 3, 6, or 50 mg/kg/day), or 30 or 500 ppm in diet (3 or 51 mg/kg/day). Anti-asialo GM1 antibodies (NKC) and cyclophosphamide (antibody-forming cell assay [AFC]) served as positive controls. Pituitary (ACTH, prolactin), adrenal (corticosterone, progesterone, aldosterone), and gonadal (androgens, estrogens) hormones were assessed after 1, 7, and/or 28 days of treatment. Food intake and body weights were significantly reduced in the highest dosed males, and transiently affected in females. Urinary corticosterone levels were not increased in atrazine-treated groups in either sex at any time point measured (10, 22, or 24 days). Corticosterone and progesterone were elevated in males after a single atrazine dose ≥6.5 mg/kg/day, but not after 7, 14, or 28 doses. There were no effects on adrenal, pituitary, or gonadal hormones in females. Atrazine did not suppress the AFC response or decrease NKC function after 28 days in males or females. Atrazine had no effect on spleen weights or spleen cell numbers in males or females, although thymus weights were elevated in males receiving the highest dose. The lack of immunotoxic effect of atrazine was associated with diminished adrenal activation over time in males, and no effects on adrenal hormones in females.


Asunto(s)
Glándulas Suprarrenales/efectos de los fármacos , Atrazina/toxicidad , Herbicidas/toxicidad , Inmunoglobulina M/metabolismo , Células Asesinas Naturales/efectos de los fármacos , Linfocitos T/efectos de los fármacos , Glándulas Suprarrenales/inmunología , Glándulas Suprarrenales/metabolismo , Animales , Atrazina/administración & dosificación , Atrazina/inmunología , Femenino , Herbicidas/administración & dosificación , Herbicidas/inmunología , Células Asesinas Naturales/inmunología , Masculino , Hipófisis/efectos de los fármacos , Hipófisis/inmunología , Hipófisis/metabolismo , Ratas , Ratas Sprague-Dawley , Factores Sexuales , Linfocitos T/inmunología
7.
Toxicol Sci ; 150(1): 169-77, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26748080

RESUMEN

Exposure to p,p'-DDE (DDE), the main bioaccumulative metabolite of the organochlorine insecticide p,p'-DDT, is associated with a higher prevalence of obesity, dyslipidemia, insulin resistance, metabolic syndrome, and immunomodulation. The present study was carried out to determine whether DDE perturbs adipose tissue homeostasis through modulation of macrophage function. Treatment with DDE or a cyclooxygenase-2 inhibitor prior to lipopolysaccharide exposure significantly decreased production of prostaglandins (PG) from J774a.1 macrophages in vitro. Similarly, J774A.1 cell lysates incubated with DDE or a specific cyclooxygenase-2 inhibitor (NS-398) produced significantly less PGE2 and PGF2α. Macrophage polarization studies revealed a pattern of DDE effects that were not fully consistent with a purely pro- or purely anti- M1 or M2 effect. However, DDE suppressed expression of two M1 markers (induced by an M1 stimulus) and enhanced expression of an M2 marker (induced by an M2 stimulus). Further studies including assessment of macrophage function are needed to fully characterize the effects of DDE on macrophage polarization. Obesity is characterized by an increase in the number of resident adipose tissue macrophages. To assess monocyte/macrophage recruitment to the adipose tissue in vivo, male C57Bl/6H mice were treated with 2 mg/kg DDE or corn oil vehicle for 5 days by gavage. Epididymal fat pads were digested and macrophage populations were analyzed by flow cytometry. In DDE-treated animals, there was a significant increase (37%) in F4/80(+)CD11b(+) macrophages/g of epididymal adipose over vehicle (P < .05). Together, these results suggest a role for DDE in the enhancement of adipose tissue macrophage recruitment and/or proliferation, as well as modulation of immune cell function that may contribute to the etiology of metabolic diseases associated with organochlorine exposure.


Asunto(s)
Tejido Adiposo/efectos de los fármacos , Diclorodifenil Dicloroetileno/toxicidad , Dinoprostona/biosíntesis , Contaminantes Ambientales/toxicidad , Activación de Macrófagos/efectos de los fármacos , Macrófagos/efectos de los fármacos , Tejido Adiposo/inmunología , Tejido Adiposo/metabolismo , Animales , Antígenos de Diferenciación/inmunología , Arginasa/genética , Antígeno CD11b/inmunología , Línea Celular , Ciclooxigenasa 2/metabolismo , Epidídimo/efectos de los fármacos , Epidídimo/inmunología , Epidídimo/metabolismo , Citometría de Flujo , Lipopolisacáridos/farmacología , Activación de Macrófagos/inmunología , Macrófagos/inmunología , Macrófagos/metabolismo , Masculino , Ratones Endogámicos C57BL , Óxido Nítrico Sintasa de Tipo II/genética , Fosfolipasas A2/metabolismo
8.
Life Sci ; 139: 1-7, 2015 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-26281915

RESUMEN

AIMS: Sodium methyldithiocarbamate (SMD), the third most widely used conventional pesticide in the United States, has been reported to inhibit several parameters associated with inflammation and to decrease resistance to infection. In a previous study, survival time was markedly decreased when mice were treated orally with SMD shortly before challenge with a high dose of Escherichia coli (E. coli) that was lethal to most of the control mice. In the present study, we evaluated selected parameters of the innate immune system using a lower challenge dose of E. coli, to determine which (if any) of these parameters reflected continued changes through 24h. MAIN METHODS: Bacterial clearance from the peritoneal cavity, production of chemokines and cytokines, and body temperature were measured. KEY FINDINGS: All these parameters were reduced by SMD up to 12h after bacterial challenge, but the concentration of the anti-inflammatory cytokine IL-10 was increased. Even so, mice in the control and SMD-treated groups cleared most bacteria by 24h. Other parameters (cytokine concentrations and body temperature) were also normal or near normal by 24h. The same dosage of SMD administered intranasally also did not significantly decrease survival. Hypothermia from 16 to 28 h correlated with lethal outcome, but SMD significantly increased hypothermia only at 2 and 4h after challenge. SIGNIFICANCE: In spite of substantial early inhibition by SMD of parameters known to be important for resistance to infection, bacterial clearance and survival were not altered, suggesting immunological reserve and/or rapid recovery after transient effects of SMD.


Asunto(s)
Inmunidad Innata/efectos de los fármacos , Plaguicidas/inmunología , Sepsis/inmunología , Sepsis/microbiología , Tiocarbamatos/inmunología , Animales , Citocinas/inmunología , Modelos Animales de Enfermedad , Escherichia coli/inmunología , Infecciones por Escherichia coli/complicaciones , Infecciones por Escherichia coli/inmunología , Femenino , Leucocitos/efectos de los fármacos , Leucocitos/inmunología , Leucocitos/microbiología , Ratones , Ratones Endogámicos C57BL , Plaguicidas/efectos adversos , Tiocarbamatos/administración & dosificación , Tiocarbamatos/efectos adversos
9.
Toxicol Sci ; 145(2): 214-32, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26008184

RESUMEN

Immunotoxicology assessments have historically focused on the effects that xenobiotics exhibit directly on immune cells. These studies are invaluable as they identify immune cell targets and help characterize mechanisms and/or adverse outcome pathways of xenobiotics within the immune system. However, leukocytes can receive environmental cues by cell-cell contact or via released mediators from cells of organs outside of the immune system. These organs include, but are not limited to, the mucosal areas such as the lung and the gut, the liver, and the central nervous system. Homeostatic perturbation in these organs induced directly by toxicants can initiate and alter the outcome of local and systemic immunity. This review will highlight some of the identified nonimmune influences on immune homeostasis and provide summaries of how immunotoxic mechanisms of selected xenobiotics involve nonimmune cells or mediators. Thus, this review will identify data gaps and provide possible alternative mechanisms by which xenobiotics alter immune function that could be considered during immunotoxicology safety assessment.


Asunto(s)
Comunicación Celular/efectos de los fármacos , Sistema Inmunológico/efectos de los fármacos , Toxicología/métodos , Xenobióticos/toxicidad , Animales , Células de la Médula Ósea/efectos de los fármacos , Células de la Médula Ósea/inmunología , Células de la Médula Ósea/metabolismo , Sistema Nervioso Central/efectos de los fármacos , Sistema Nervioso Central/inmunología , Sistema Nervioso Central/metabolismo , Humanos , Sistema Inmunológico/inmunología , Sistema Inmunológico/metabolismo , Ganglios Linfáticos/efectos de los fármacos , Ganglios Linfáticos/inmunología , Ganglios Linfáticos/metabolismo , Medición de Riesgo , Transducción de Señal/efectos de los fármacos , Células del Estroma/efectos de los fármacos , Células del Estroma/inmunología , Células del Estroma/metabolismo , Timo/efectos de los fármacos , Timo/inmunología , Timo/metabolismo
10.
Toxicol Sci ; 136(2): 430-42, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24056979

RESUMEN

Sodium methyldithiocarbamate (SMD) is one of the most abundantly used conventional pesticides in the United States. At dosages relevant to occupational exposure, it causes major effects on the immune system in mice, including a decreased resistance to sepsis. This lab has identified some of the mechanisms of action of this compound and some of the immunological parameters affected, but the global effects have not previously been assessed. The purpose of the present study was to conduct transcriptomic analysis of the effects of SMD on lipopolysaccharide-induced expression of mediators important in innate immunity and inflammation. The results revealed broad effects on expression of transcription factors in both branches of Toll-like receptor 4 (TLR4) signaling (MyD88 and TRIF). However, TLR3 and interferon signaling pathways were decreased to a greater extent, and assessment of the effects of SMD on polyinosinic polycytidylic acid-induced cytokine and chemokine production revealed that these responses mediated by TLR3 were indeed sensitive to the effects of SMD, with inhibition occurring at lower dosages than required to inhibit responses to other immunological stimuli tested in our previous studies. In the downstream signaling pathways of these TLRs, functional analysis also revealed that NF-κB activation was inhibited by SMD, as indicated by gene expression analysis and a reporter construct in mice. A previously unreported effect on luteinizing hormone and follicle-stimulating hormone pathways was also observed.


Asunto(s)
Inflamación/metabolismo , Transducción de Señal/efectos de los fármacos , Tiocarbamatos/toxicidad , Animales , Citocinas/biosíntesis , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Inmunidad Innata/genética , Mediadores de Inflamación/metabolismo , Lipopolisacáridos/administración & dosificación , Macrófagos Peritoneales/efectos de los fármacos , Macrófagos Peritoneales/metabolismo , Ratones , Ratones Endogámicos C57BL
11.
Alcohol Clin Exp Res ; 37(4): 550-7, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23347137

RESUMEN

Binge consumption of alcohol is an alarming global health problem. Binge (acute) ethanol (EtOH) is implicated in the pathophysiology of alcoholic liver disease (ALD). New studies from experimental animals and from humans indicate that binge EtOH has profound effects on immunological, signaling, and epigenetic parameters of the liver. This is in addition to the known metabolic effects of acute EtOH. Binge EtOH alters the levels of several cellular components and dramatically amplifies liver injury in chronically EtOH exposed liver. These studies highlight the importance of molecular investigations into binge effects of EtOH for a better understanding of ALD and also to develop therapeutic strategies to control it. This review summarizes these recent developments.


Asunto(s)
Consumo Excesivo de Bebidas Alcohólicas/metabolismo , Hepatopatías Alcohólicas/metabolismo , Hígado/metabolismo , Animales , Consumo Excesivo de Bebidas Alcohólicas/genética , Consumo Excesivo de Bebidas Alcohólicas/patología , Etanol/administración & dosificación , Etanol/efectos adversos , Humanos , Mediadores de Inflamación/metabolismo , Hígado/efectos de los fármacos , Hígado/patología , Hepatopatías Alcohólicas/genética , Hepatopatías Alcohólicas/patología
12.
BMC Genomics ; 13: 509, 2012 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-23009705

RESUMEN

BACKGROUND: The events leading to sepsis start with an invasive infection of a primary organ of the body followed by an overwhelming systemic response. Intra-abdominal infections are the second most common cause of sepsis. Peritoneal fluid is the primary site of infection in these cases. A microarray-based approach was used to study the temporal changes in cells from the peritoneal cavity of septic mice and to identify potential biomarkers and therapeutic targets for this subset of sepsis patients. RESULTS: We conducted microarray analysis of the peritoneal cells of mice infected with a non-pathogenic strain of Escherichia coli. Differentially expressed genes were identified at two early (1 h, 2 h) and one late time point (18 h). A multiplexed bead array analysis was used to confirm protein expression for several cytokines which showed differential expression at different time points based on the microarray data. Gene Ontology based hypothesis testing identified a positive bias of differentially expressed genes associated with cellular development and cell death at 2 h and 18 h respectively. Most differentially expressed genes common to all 3 time points had an immune response related function, consistent with the observation that a few bacteria are still present at 18 h. CONCLUSIONS: Transcriptional regulators like PLAGL2, EBF1, TCF7, KLF10 and SBNO2, previously not described in sepsis, are differentially expressed at early and late time points. Expression pattern for key biomarkers in this study is similar to that reported in human sepsis, indicating the suitability of this model for future studies of sepsis, and the observed differences in gene expression suggest species differences or differences in the response of blood leukocytes and peritoneal leukocytes.


Asunto(s)
Infecciones Intraabdominales/genética , Infecciones Intraabdominales/microbiología , Peritoneo/microbiología , Sepsis/genética , Sepsis/microbiología , Animales , Células Cultivadas , Proteínas de Unión al ADN/biosíntesis , Proteínas de Unión al ADN/genética , Modelos Animales de Enfermedad , Factores de Transcripción de la Respuesta de Crecimiento Precoz/biosíntesis , Factores de Transcripción de la Respuesta de Crecimiento Precoz/genética , Escherichia coli , Infecciones por Escherichia coli/microbiología , Femenino , Expresión Génica , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Marcadores Genéticos , Factor Nuclear 1-alfa del Hepatocito , Factores de Transcripción de Tipo Kruppel/biosíntesis , Factores de Transcripción de Tipo Kruppel/genética , Ratones , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Análisis de Secuencia por Matrices de Oligonucleótidos , Proteínas de Unión al ARN/biosíntesis , Proteínas de Unión al ARN/genética , Proteínas Represoras/biosíntesis , Proteínas Represoras/genética , Factor 1 de Transcripción de Linfocitos T/biosíntesis , Factor 1 de Transcripción de Linfocitos T/genética , Transactivadores/biosíntesis , Transactivadores/genética , Factores de Transcripción/biosíntesis , Factores de Transcripción/genética , Transcripción Genética , Transcriptoma
13.
Toxicol Sci ; 129(1): 57-73, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22696237

RESUMEN

No method has been reported to predict, even approximately, the impact of mild-to-moderate changes in several immunological parameters on resistance to infection. The ability to make such predictions would be useful in risk assessment. In addition, equations that predict host resistance on the basis of changes in components of a complex biological system (the immune system) would fulfill one of the major goals of systems biology. In this study, multiple machine learning classification methods were used to predict the effects of a series of drugs and chemicals on host resistance to Listeria monocytogenes in mice on the basis of changes in several holistic immunological parameters. A data set produced under the sponsorship of the National Toxicology Program (NTP) was used in this study. The NTP data set was found to have a high percentage of missing data and to be noisy (probably due to the intrinsically stochastic nature of immune responses). Data preprocessing steps were used to mitigate these problems. In evaluating the machine learning classifiers, we first randomly partitioned the NTP data set into 10 subsets. Each time, we used nine subsets of the data to train the machine learning classifiers, and the remaining single subset to predict outcomes with regard to host resistance. This process was repeated until all 10 combinations of the 9-1 split of the subsets have been tested. The best of the classifiers predicted host resistance outcome correctly for 94.7% of cases, a result which indicates it is possible to identify mathematical expressions that will be useful for risk assessment and to establish a basis for systems immunology.


Asunto(s)
Inteligencia Artificial , Sistema Inmunológico/fisiología , Listeria monocytogenes/inmunología , Animales , Humanos , Medición de Riesgo
14.
Int J Toxicol ; 31(4): 326-36, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22689636

RESUMEN

Occidiofungin, a glycolipopeptide obtained from the liquid culture of Burkholderia contaminans MS14, has been identified as a novel fungicide. The present study was designed to initially assess the in vitro toxicity in a rat hepatoma (H4IIE) cell line and acute toxicological effects of occidiofungin using a mouse model. In vitro toxicity was observed in all variables at 5 µmol/L. B6C3F1 mice were given single and repeat doses of occidiofungin up to 20 mg/kg. Key effects were a reduction in body and organ weights. However, no significant decrease in body weight was noted at a dose of 1 mg/kg, which is comparable to the dose level of other cyclic glycopeptide antifungal agents currently approved for human use. Microscopic examination of treated mice did not identify any signs of organ-specific toxicity at the dose levels tested.


Asunto(s)
Antifúngicos/farmacología , Toxinas Bacterianas/farmacología , Glicopéptidos/farmacología , Péptidos Cíclicos/farmacología , Animales , Peso Corporal/efectos de los fármacos , Burkholderia/metabolismo , Línea Celular Tumoral , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos , Femenino , Ratones , Ratones Endogámicos C57BL , Tamaño de los Órganos/efectos de los fármacos , Ratas , Pruebas de Toxicidad Aguda
15.
PLoS One ; 7(2): e29890, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22319556

RESUMEN

Toll-like receptors (TLRs) play a fundamental role in the immune system by detecting pathogen associated molecular patterns (PAMPs) to sense host infection. Ethanol at doses relevant for humans inhibits the pathogen induced cytokine response mediated through TLRs. The current study was designed to investigate the mechanisms of this effect by determining whether ethanol inhibits TLR3 and TLR4 mediated TNF-α secretion through inhibition of transcription factor activation or post-transcriptional effects. In NF-κB reporter mice, activation of NF-κB in vivo by LPS was inhibited by ethanol (LPS alone yielded 170,000±35,300 arbitrary units of light emission; LPS plus ethanol yielded 56,120±16880, p = 0.04). Inhibition of protein synthesis by cycloheximide revealed that poly I:C- or LPS-induced secreted TNF-α is synthesized de novo, not released from cellular stores. Using real time RT-PCR, we found inhibition of LPS and poly I:C induced TNF-α gene transcription by ethanol. Using an inhibitor of tumor necrosis factor alpha converting enzyme (TACE), we found that shedding caused by TACE is a prerequisite for TNF-α release after pathogen challenge. Flow cytometry was used to investigate if ethanol decreases TNF-α secretion by inhibition of TACE. In cells treated with LPS, ethanol decreased both TNF-α cell surface expression and secretion. For example, 4.69±0.60% of untreated cells were positive for cell surface TNF-α, LPS increased this to 25.18±0.85%, which was inhibited by ethanol (86.8 mM) to 14.29±0.39% and increased by a TACE inhibitor to 57.88±0.62%. In contrast, cells treated with poly I:C had decreased secretion of TNF-α but not cell surface expression. There was some evidence for inhibition of TACE by ethanol in the case of LPS, but decreased TNF-α gene expression seems to be the major mechanism of ethanol action in this system.


Asunto(s)
Proteínas ADAM/fisiología , Etanol/farmacología , Factor de Necrosis Tumoral alfa/antagonistas & inhibidores , Proteína ADAM17 , Animales , Línea Celular , Regulación de la Expresión Génica/efectos de los fármacos , Ratones , Solubilidad , Factor de Necrosis Tumoral alfa/biosíntesis
16.
Alcohol ; 45(8): 795-803, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21872420

RESUMEN

Sepsis is a major cause of death worldwide. The associated risks and mortality are known to significantly increase on exposure to alcohol (chronic or acute). The underlying mechanisms of the association of acute ethanol ingestion and poor prognosis of sepsis are largely unknown. The study described here was designed to determine in detail the role of ethanol and TLR4 in the pathogenesis of the sepsis syndrome. The effects of acute ethanol exposure and TLR4 on bacterial clearance, spleen cell numbers, peritoneal macrophage numbers, and cytokine production were evaluated using wild-type and TLR4 hyporesponsive mice treated with ethanol and then challenged with a nonpathogenic strain of Escherichia coli. Ethanol-treated mice exhibited a decreased clearance of bacteria and produced lesser amounts of most pro-inflammatory cytokines in both strains of mice at 2h after challenge. Neither ethanol treatment nor a hyporesponsive TLR4 had significant effects on the cell numbers in the peritoneal cavity and spleen 2h postinfection. The suppressive effect of acute ethanol exposure on cytokine and chemokine production was more pronounced in the wild-type mice, but the untreated hyporesponsive mice produced less of most cytokines than untreated wild-type mice. The major conclusion of this study is that acute ethanol exposure suppresses pro-inflammatory cytokine production and that a hyporesponsive TLR4 (in C3H/HeJ mice) decreases pro-inflammatory cytokine levels, but the cytokines and other mediators induced through other receptors are sufficient to ultimately clear the infection but not enough to induce lethal septic shock. In addition, results reported here demonstrate previously unknown effects of acute ethanol exposure on leukemia inhibitory factor and eotaxin, and provide the first evidence that interleukin (IL)-9 is induced through TLR4 in vivo.


Asunto(s)
Etanol/administración & dosificación , Sepsis/fisiopatología , Receptor Toll-Like 4/fisiología , Animales , Carga Bacteriana , Citocinas/análisis , Citocinas/biosíntesis , Escherichia coli , Femenino , Inmunidad/efectos de los fármacos , Inflamación/fisiopatología , Macrófagos Peritoneales , Ratones , Ratones Endogámicos C3H , Ratones Mutantes , Mutación , Cavidad Peritoneal/microbiología , Sepsis/inmunología , Bazo/inmunología , Bazo/microbiología , Receptor Toll-Like 4/genética
17.
Alcohol ; 45(6): 523-39, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21827928

RESUMEN

Alcohol is the most frequently abused substance in the world. Both acute and chronic alcohol consumption have diverse and well-documented effects on the human immune system, leading to increased susceptibility to infections like bacterial pneumonia. Streptococcus pneumoniae is the most common bacterial etiology of community-acquired pneumonia worldwide. The frequency and severity of pneumococcal infections in individuals with a history of alcohol abuse is much higher than the general population. Despite this obvious epidemiological relevance, very few experimental studies have focused on the interaction of pneumococci with the immune system of a host acutely or chronically exposed to alcohol. Understanding these host-pathogen interactions is imperative for designing effective prophylactic and therapeutic interventions for such populations. Recent advances in pneumococcal research have greatly improved our understanding of pneumococcal pathogenesis and virulence mechanisms. Additionally, a large body of data is available on the effect of alcohol on the physiology of the lungs and the innate and adaptive immune system of the host. The purpose of this review is to integrate the available knowledge in these diverse areas of for a better understanding of the how the compromised immune system derived from alcohol exposure responds to pneumococcal infections.


Asunto(s)
Alcoholismo/inmunología , Infecciones Neumocócicas/inmunología , Inmunidad Adaptativa/inmunología , Alcoholismo/complicaciones , Infecciones Comunitarias Adquiridas/inmunología , Interacciones Huésped-Patógeno , Humanos , Inmunidad Innata/efectos de los fármacos , Neumonía Neumocócica/inmunología , Streptococcus pneumoniae/patogenicidad , Virulencia/inmunología , Factores de Virulencia/fisiología
18.
Alcohol ; 45(1): 1-9, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20843633

RESUMEN

Enzyme-linked immunosorbent assays (ELISAs) are frequently used in studies on cytokine production in response to treatment of cell cultures or laboratory animals. When an ELISA assay is performed on cell culture supernatants, samples often contain the treatment agents. The purpose of the present study was to determine if some of the agents evaluated might inhibit cytokine detection by interfering with the ELISA, leaving the question of whether cytokine production was inhibited unanswered. Mouse and human cytokine ELISA kits from BD Biosciences were used according to the manufacturer's instructions. Cytokine proteins were subjected to one to five carbon alcohols at 86.8mM (methanol, ethanol, 1-propanol, 2-propanol, n-butanol, and n-pentanol). After treating cell cultures with alcohols of different carbon chain lengths, we found that some of the alcohols interfered with measurement of some cytokines by ELISA, thus making their effects on cytokine production by cells in culture unclear. Increasing carbon chain length of straight chain alcohols positively correlated with their ability to inhibit detection of tumor necrosis factor alpha (TNF-α) and interleukin 10 (IL-10), but not with the detection of interleukin 6 (IL-6), interleukin 8, (IL-8), and interleukin 12 (IL-12). To avoid misinterpretation of treatment effects, ELISA assays should be tested with the reference protein and the treatment agent first, before testing biological samples. These results along with other recent results we obtained using circular dichroism indicate that alcohols with two or more carbons can directly alter protein conformation enough to disrupt binding in an ELISA (shown in the present study) or to inhibit ligand-induced conformational changes (results not shown). Such direct effects have not been given enough consideration as a mechanism of ethanol action in the immune system.


Asunto(s)
Alcoholes/química , Alcoholes/farmacología , Citocinas/análisis , Ensayo de Inmunoadsorción Enzimática , Etanol/farmacología , 1-Butanol/farmacología , 1-Propanol/farmacología , 2-Propanol/farmacología , Animales , Células Cultivadas , Citocinas/biosíntesis , Reacciones Falso Negativas , Humanos , Interleucina-10/análisis , Interleucinas/análisis , Macrófagos/metabolismo , Metanol/farmacología , Ratones , Monocitos/metabolismo , Pentanoles/farmacología , Conformación Proteica/efectos de los fármacos , Relación Estructura-Actividad , Factor de Necrosis Tumoral alfa/análisis
19.
Toxicol Sci ; 117(2): 314-24, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20624996

RESUMEN

Sepsis is a major cause of mortality worldwide. Acute or chonic ethanol exposure typically suppresses innate immunity and inflammation and increases the risk of mortality in patients with sepsis. The study described here was designed to address the mechanism(s) by which acute ethanol exposure alters the course of sepsis. Ethanol administered to mice shortly before Escherichia coli (injected ip to produce sepsis) decreased production of proinflammatory cytokines and chemokines for several hours. Bacteria in the peritoneal cavity decreased over time in control mice and were mostly cleared by 21 h, but in ethanol-treated mice, bacteria increased over time to more than 2 × 10(8) at 21 h. Killing of bacteria in macrophages and neutrophils was apparently compromised by ethanol, as the percentage of these cells that had cleared phagocytosed bacteria increased over time in control mice but not in ethanol-treated mice. The roles of TLR4, MyD88, and myeloperoxidase (MPO) were evaluated using mutant or knockout mice, and these experiments indicated that mice with hyporesponsive TLR4 survived better than those with normal TLR4. Lack of MyD88 or MPO did not significantly alter survival in the presence or absence of ethanol. Ethanol decreased survival in all groups. This indicates that the antimicrobial activities induced though TLR4 are dispensable for survival but contribute to lethality late in the course of sepsis. Thus, the effects of ethanol responsible for lethal outcome in sepsis are not dependent on inhibition of TLR4 signaling, as we and others had previously suspected.


Asunto(s)
Etanol/toxicidad , Inmunidad Innata/efectos de los fármacos , Peritonitis/inmunología , Sepsis/inmunología , Consumo de Bebidas Alcohólicas , Animales , Citocinas/metabolismo , Modelos Animales de Enfermedad , Infecciones por Escherichia coli/tratamiento farmacológico , Infecciones por Escherichia coli/inmunología , Infecciones por Escherichia coli/metabolismo , Femenino , Inmunidad Innata/inmunología , Longevidad/efectos de los fármacos , Macrófagos Peritoneales/efectos de los fármacos , Macrófagos Peritoneales/inmunología , Macrófagos Peritoneales/microbiología , Ratones , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Ratones Noqueados , Neutrófilos/efectos de los fármacos , Neutrófilos/inmunología , Neutrófilos/microbiología , Peritonitis/metabolismo , Peritonitis/microbiología , Fagocitosis/efectos de los fármacos , Fagocitosis/inmunología , Sepsis/metabolismo , Sepsis/microbiología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/inmunología , Receptor Toll-Like 4/inmunología , Receptor Toll-Like 4/metabolismo
20.
BMC Immunol ; 10: 49, 2009 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-19765273

RESUMEN

BACKGROUND: Previous reports indicate that ethanol, in a binge drinking model in mice, inhibits the production of pro-inflammatory cytokines in vivo. However, the inhibition of signaling through TLR4 has not been investigated in this experimental model in vivo. Considering evidence that signaling can be very different in vitro and in vivo, the present study was conducted to determine if effects of ethanol on TLR4 signaling reported for cells in culture or cells removed from ethanol treated mice and stimulated in culture also occur when ethanol treatment and TLR4 activation occur in vivo. RESULTS: Phosphorylated p38, ERK, and c-Jun (nuclear) were quantified with kits or by western blot using samples taken 15, 30, and 60 min after stimulation of peritoneal macrophages with lipopolysaccharide in vivo. Effects of ethanol were assessed by administering ethanol by gavage at 6 g/kg 30 min before administration of lipopolysaccharide (LPS). Cytokine concentrations in the samples of peritoneal lavage fluid and in serum were determined at 1, 2, and 6 hr after lipopolysaccharide administration. All of these data were used to measure the area under the concentration vs time curve, which provided an indication of the overall effects of ethanol in this system. Ethanol suppressed production of most pro-inflammatory cytokines to a similar degree as it inhibited key TLR4 signaling events. However, NF-kappaB (p65) translocation to the nucleus was not inhibited by ethanol. To determine if NF-kappaB composed of other subunits was inhibited, transgenic mice with a luciferase reporter were used. This revealed a reproducible inhibition of NF-kappaB activity, which is consistent with the observed inhibition of cytokines whose expression is known to be NF-kappaB dependent. CONCLUSION: Overall, the effects of ethanol on signalling in vivo were similar to those reported for in vitro exposure to ethanol and/or lipopolysaccharide. However, inhibition of the activation of NF-kappaB was not detected as translocation of p65 to the nucleus but was detected using transgenic reporter mice. The observation that ethanol given 24 hr before dosing with LPS modulated production of some cytokines indicates a persistent effect which does not require continued presence of ethanol.


Asunto(s)
Citocinas/metabolismo , Etanol/envenenamiento , Macrófagos Peritoneales/efectos de los fármacos , Macrófagos Peritoneales/metabolismo , Transducción de Señal/efectos de los fármacos , Receptor Toll-Like 4/metabolismo , Animales , Células Cultivadas , Citocinas/inmunología , Modelos Animales de Enfermedad , Femenino , Inmunomodulación , Lipopolisacáridos/inmunología , Lipopolisacáridos/farmacología , Macrófagos Peritoneales/inmunología , Macrófagos Peritoneales/patología , Ratones , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Ratones Transgénicos , FN-kappa B/genética , FN-kappa B/inmunología , FN-kappa B/metabolismo , Transducción de Señal/inmunología , Receptor Toll-Like 4/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...