Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biomedicines ; 11(9)2023 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-37760989

RESUMEN

The hyperinflammatory response caused by SARS-CoV-2 infection contributes to its severity, and many critically ill patients show features of cytokine storm (CS) syndrome. We investigated, by next-generation sequencing, 24 causative genes of primary immunodeficiencies whose defect predisposes to CS. We studied two cohorts with extreme phenotypes of SARS-CoV-2 infection: critical/severe hyperinflammatory patients (H-P) and asymptomatic patients (AM-risk-P) with a high risk (older age) to severe COVID-19. To explore inborn errors of the immunity, we investigated the presence of pathogenic or rare variants, and to identify COVID-19 severity-associated markers, we compared the allele frequencies of common genetic polymorphisms between our two cohorts. We found: 1 H-P carries the likely pathogenic variant c.887-2 A>C in the IRF7 gene and 5 H-P carries variants in the MEFV gene, whose role in the pathogenicity of the familial Mediterranean fever (FMF) disease is controversial. The common polymorphism analysis showed three potential risk biomarkers for developing the hyperinflammatory response: the homozygous haplotype rs1231123A/A-rs1231122A/A in MEFV gene, the IFNAR2 p.Phe8Ser variant, and the CARMIL2 p.Val181Met variant. The combined analysis showed an increased risk of developing severe COVID-19 in patients that had at least one of our genetic risk markers (odds ratio (OR) = 6.2 (95% CI) (2.430-16.20)).

2.
Acta Ophthalmol ; 98(8): e1034-e1048, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32483926

RESUMEN

PURPOSE: In the era of precision medicine, genomic characterization of blind patients is critical. Here, we evaluate the effects of comprehensive genetic analysis on the etiologic diagnosis of potentially hereditary vision loss and its impact on clinical management. METHODS: We studied 100 non-syndromic and syndromic Spanish patients with a clinical diagnosis of blindness caused by alterations on the retina, choroid, vitreous and/or optic nerve. We used a next-generation sequencing (NGS) panel (OFTALMOgenics™), developed and validated within this study, including up to 362 genes previously associated with these conditions. RESULTS: We identified the genetic cause of blindness in 45% of patients (45/100). A total of 28.9% of genetically diagnosed cases (13/45) were syndromic and, of those, in 30.8% (4/13) extraophthalmic features had been overlooked and/or not related to visual impairment before genetic testing, including cases with Mainzer-Saldino, Bardet-Biedl, mucolipidosis and MLCRD syndromes. In two additional cases-syndromic blindness had been proposed before, but not specifically diagnosed, and one patient with Heimler syndrome had been misdiagnosed as an Usher case before testing. 33.3% of the genetically diagnosed patients (15/45) had causative variants in genes targeted by clinical trials exploring the curative potential of gene therapy approaches. CONCLUSION: Comprehensive genomic testing provided clinically relevant insights in a large proportion of blind patients, identifying potential therapeutic opportunities or previously undiagnosed syndromes in 42.2% of the genetically diagnosed cases (19/45).


Asunto(s)
Manejo de la Enfermedad , Pruebas Genéticas/métodos , Genómica/métodos , Enfermedades del Nervio Óptico/genética , Enfermedades de la Retina/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Enfermedades del Nervio Óptico/diagnóstico , Enfermedades del Nervio Óptico/terapia , Linaje , Fenotipo , Enfermedades de la Retina/diagnóstico , Enfermedades de la Retina/terapia , Síndrome
4.
Nucleic Acids Res ; 47(10): 5016-5037, 2019 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-30923829

RESUMEN

Histone H4 acetylation at Lysine 16 (H4K16ac) is a key epigenetic mark involved in gene regulation, DNA repair and chromatin remodeling, and though it is known to be essential for embryonic development, its role during adult life is still poorly understood. Here we show that this lysine is massively hyperacetylated in peripheral neutrophils. Genome-wide mapping of H4K16ac in terminally differentiated blood cells, along with functional experiments, supported a role for this histone post-translational modification in the regulation of cell differentiation and apoptosis in the hematopoietic system. Furthermore, in neutrophils, H4K16ac was enriched at specific DNA repeats. These DNA regions presented an accessible chromatin conformation and were associated with the cleavage sites that generate the 50 kb DNA fragments during the first stages of programmed cell death. Our results thus suggest that H4K16ac plays a dual role in myeloid cells as it not only regulates differentiation and apoptosis, but it also exhibits a non-canonical structural role in poising chromatin for cleavage at an early stage of neutrophil cell death.


Asunto(s)
Apoptosis , Diferenciación Celular , Cromatina/metabolismo , Histonas/metabolismo , Lisina/metabolismo , Células Mieloides/metabolismo , Acetilación , Animales , Células Cultivadas , Cromatina/genética , Epigénesis Genética , Humanos , Ratones Endogámicos C57BL , Ratones Noqueados , Células Mieloides/citología , Procesamiento Proteico-Postraduccional , Transcripción Genética
5.
BMC Med Genomics ; 11(1): 58, 2018 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-29986705

RESUMEN

BACKGROUND: Sensorineural hearing loss (SNHL) is the most common sensory impairment. Comprehensive next-generation sequencing (NGS) has become the standard for the etiological diagnosis of early-onset SNHL. However, accurate selection of target genomic regions (gene panel/exome/genome), analytical performance and variant interpretation remain relevant difficulties for its clinical implementation. METHODS: We developed a novel NGS panel with 199 genes associated with non-syndromic and/or syndromic SNHL. We evaluated the analytical sensitivity and specificity of the panel on 1624 known single nucleotide variants (SNVs) and indels on a mixture of genomic DNA from 10 previously characterized lymphoblastoid cell lines, and analyzed 50 Spanish patients with presumed hereditary SNHL not caused by GJB2/GJB6, OTOF nor MT-RNR1 mutations. RESULTS: The analytical sensitivity of the test to detect SNVs and indels on the DNA mixture from the cell lines was > 99.5%, with a specificity > 99.9%. The diagnostic yield on the SNHL patients was 42% (21/50): 47.6% (10/21) with autosomal recessive inheritance pattern (BSND, CDH23, MYO15A, STRC [n = 2], USH2A [n = 3], RDX, SLC26A4); 38.1% (8/21) autosomal dominant (ACTG1 [n = 3; 2 de novo], CHD7, GATA3 [de novo], MITF, P2RX2, SOX10), and 14.3% (3/21) X-linked (COL4A5 [de novo], POU3F4, PRPS1). 46.9% of causative variants (15/32) were not in the databases. 28.6% of genetically diagnosed cases (6/21) had previously undetected syndromes (Barakat, Usher type 2A [n = 3] and Waardenburg [n = 2]). 19% of genetic diagnoses (4/21) were attributable to large deletions/duplications (STRC deletion [n = 2]; partial CDH23 duplication; RDX exon 2 deletion). CONCLUSIONS: In the era of precision medicine, obtaining an etiologic diagnosis of SNHL is imperative. Here, we contribute to show that, with the right methodology, NGS can be transferred to the clinical practice, boosting the yield of SNHL genetic diagnosis to 50-60% (including GJB2/GJB6 alterations), improving diagnostic/prognostic accuracy, refining genetic and reproductive counseling and revealing clinically relevant undiagnosed syndromes.


Asunto(s)
Genómica , Pérdida Auditiva/diagnóstico , Pérdida Auditiva/genética , Adolescente , Adulto , Niño , Preescolar , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Mutación INDEL , Lactante , Recién Nacido , Masculino , Persona de Mediana Edad , Fenotipo , España , Adulto Joven
6.
Mol Genet Genomic Med ; 5(4): 336-359, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28717660

RESUMEN

BACKGROUND: Next-generation sequencing (NGS) opens new options in clinical oncology, from therapy selection to genetic counseling. However, realization of this potential not only requires succeeding in the bioinformatics and interpretation of the results, but also in their integration into the clinical practice. We have developed a novel NGS diagnostic platform aimed at detecting (1) somatic genomic alterations associated with the response to approved targeted cancer therapies and (2) germline mutations predisposing to hereditary malignancies. METHODS: Next-generation sequencing libraries enriched in the exons of 215 cancer genes (97 for therapy selection and 148 for predisposition, with 30 informative for both applications), as well as selected introns from 17 genes involved in drug-related rearrangements, were prepared from 39 tumors (paraffin-embedded tissues/cytologies), 36 germline samples (blood) and 10 cell lines using hybrid capture. Analysis of NGS results was performed with specifically developed bioinformatics pipelines. RESULTS: The platform detects single-nucleotide variants (SNVs) and insertions/deletions (indels) with sensitivity and specificity >99.5% (allelic frequency ≥0.1), as well as copy-number variants (CNVs) and rearrangements. Somatic testing identified tailored approved targeted drugs in 35/39 tumors (89.74%), showing a diagnostic yield comparable to that of leading commercial platforms. A somatic EGFR p.E746_S752delinsA mutation in a mediastinal metastasis from a breast cancer prompted its anatomopathologic reassessment, its definite reclassification as a lung cancer and its treatment with gefitinib (partial response sustained for 15 months). Testing of 36 germline samples identified two pathogenic mutations (in CDKN2A and BRCA2). We propose a strategy for interpretation and reporting of results adaptable to the aim of the request, the availability of tumor and/or normal samples and the scope of the informed consent. CONCLUSION: With an adequate methodology, it is possible to translate to the clinical practice the latest advances in precision oncology, integrating under the same platform the identification of somatic and germline genomic alterations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...