Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cancer Metastasis Rev ; 42(4): 1155-1167, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37353690

RESUMEN

Metastatic progression is regulated by metastasis promoter and suppressor genes. NME1, the prototypic and first described metastasis suppressor gene, encodes a nucleoside diphosphate kinase (NDPK) involved in nucleotide metabolism; two related family members, NME2 and NME4, are also reported as metastasis suppressors. These proteins physically interact with members of the GTPase dynamin family, which have key functions in membrane fission and fusion reactions necessary for endocytosis and mitochondrial dynamics. Evidence supports a model in which NDPKs provide GTP to dynamins to maintain a high local GTP concentration for optimal dynamin function. NME1 and NME2 are cytosolic enzymes that provide GTP to dynamins at the plasma membrane, which drive endocytosis, suggesting that these NMEs are necessary to attenuate signaling by receptors on the cell surface. Disruption of NDPK activity in NME-deficient tumors may thus drive metastasis by prolonging signaling. NME4 is a mitochondrial enzyme that interacts with the dynamin OPA1 at the mitochondria inner membrane to drive inner membrane fusion and maintain a fused mitochondrial network. This function is consistent with the current view that mitochondrial fusion inhibits the metastatic potential of tumor cells whereas mitochondrial fission promotes metastasis progression. The roles of NME family members in dynamin-mediated endocytosis and mitochondrial dynamics and the intimate link between these processes and metastasis provide a new framework to understand the metastasis suppressor functions of NME proteins.


Asunto(s)
Nucleósido Difosfato Quinasas NM23 , Neoplasias , Humanos , Nucleósido Difosfato Quinasas NM23/genética , Nucleósido Difosfato Quinasas NM23/metabolismo , Dinaminas/metabolismo , Neoplasias/patología , Membrana Celular/metabolismo , Guanosina Trifosfato
2.
BMC Biol ; 21(1): 73, 2023 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-37024974

RESUMEN

BACKGROUND: E3 ubiquitin ligases play critical roles in regulating cellular signaling pathways by inducing ubiquitylation of key components. RNF111/Arkadia is a RING E3 ubiquitin ligase that activates TGF-ß signaling by inducing ubiquitylation and proteasomal degradation of the transcriptional repressor SKIL/SnoN. In this study, we have sought to identify novel regulators of the E3 ubiquitin ligase activity of RNF111 by searching for proteins that specifically interacts with its RING domain. RESULTS: We found that UBXN7, a member of the UBA-UBX family, directly interacts with the RING domain of RNF111 or its related E3 RNF165/ARK2C that shares high sequence homology with RNF111. We showed that UBXN7 docks on RNF111 or RNF165 RING domain through its UAS thioredoxin-like domain. Overexpression of UBXN7 or its UAS domain increases endogenous RNF111, while an UBXN7 mutant devoid of UAS domain has no effect. Conversely, depletion of UBXN7 decreases RNF111 protein level. As a consequence, we found that UBXN7 can modulate degradation of the RNF111 substrate SKIL in response to TGF-ß signaling. We further unveiled this mechanism of regulation by showing that docking of the UAS domain of UBXN7 inhibits RNF111 ubiquitylation by preventing interaction of the RING domain with the E2 conjugating enzymes. By analyzing the interactome of the UAS domain of UBXN7, we identified that it also interacts with the RING domain of the E3 TOPORS and similarly regulates its E3 ubiquitin ligase activity by impairing E2 binding. CONCLUSIONS: Taken together, our results demonstrate that UBXN7 acts as a direct regulator for the E3 ubiquitin ligases RNF111, RNF165, and TOPORS and reveal that a thioredoxin-like domain can dock on specific RING domains to regulate their E3 ubiquitin ligase activity.


Asunto(s)
Ubiquitina-Proteína Ligasas , Ubiquitinas , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , Factor de Crecimiento Transformador beta/metabolismo , Tiorredoxinas/genética , Tiorredoxinas/metabolismo
3.
J Cell Biol ; 222(4)2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-36828547

RESUMEN

The transcription factor Prdm16 functions as a potent suppressor of transforming growth factor-beta (TGF-ß) signaling, whose inactivation is deemed essential to the progression of pancreatic ductal adenocarcinoma (PDAC). Using the KrasG12D-based mouse model of human PDAC, we surprisingly found that ablating Prdm16 did not block but instead accelerated PDAC formation and progression, suggesting that Prdm16 might function as a tumor suppressor in this malignancy. Subsequent genetic experiments showed that ablating Prdm16 along with Smad4 resulted in a shift from a well-differentiated and confined neoplasm to a highly aggressive and metastatic disease, which was associated with a striking deviation in the trajectory of the premalignant lesions. Mechanistically, we found that Smad4 interacted with and recruited Prdm16 to repress its own expression, therefore pinpointing a model in which Prdm16 functions downstream of Smad4 to constrain the PDAC malignant phenotype. Collectively, these findings unveil an unprecedented antagonistic interaction between the tumor suppressors Smad4 and Prdm16 that functions to restrict PDAC progression and metastasis.


Asunto(s)
Carcinoma Ductal Pancreático , Proteínas de Unión al ADN , Neoplasias Pancreáticas , Proteína Smad4 , Factores de Transcripción , Animales , Humanos , Ratones , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patología , Línea Celular Tumoral , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Proteína Smad4/genética , Proteína Smad4/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Neoplasias Pancreáticas
4.
Sci Rep ; 12(1): 22131, 2022 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-36550142

RESUMEN

Fibroblast growth factor-2 (FGF2) has multiple roles in cutaneous wound healing but its natural low stability prevents the development of its use in skin repair therapies. Here we show that FGF2 binds the outer surface of dermal fibroblast (DF)-derived extracellular vesicles (EVs) and this association protects FGF2 from fast degradation. EVs isolated from DF cultured in the presence of FGF2 harbor FGF2 on their surface and FGF2 can bind purified EVs in absence of cells. Remarkably, FGF2 binding to EVs is restricted to a specific subpopulation of EVs, which do not express CD63 and CD81 markers. Treatment of DF with FGF2-EVs activated ERK and STAT signaling pathways and increased cell proliferation and migration. Local injection of FGF2-EVs improved wound healing in mice. We further demonstrated that binding to EVs protects FGF2 from both thermal and proteolytic degradation, thus maintaining FGF2 function. This suggests that EVs protect soluble factors from degradation and increase their stability and half-life. These results reveal a novel aspect of EV function and suggest EVs as a potential tool for delivering FGF2 in skin healing therapies.


Asunto(s)
Vesículas Extracelulares , Factor 2 de Crecimiento de Fibroblastos , Animales , Ratones , Factor 2 de Crecimiento de Fibroblastos/farmacología , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Cicatrización de Heridas , Vesículas Extracelulares/metabolismo , Proliferación Celular , Fibroblastos/metabolismo
5.
Cell Rep ; 41(6): 111623, 2022 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-36351408

RESUMEN

A long-standing question in the pancreatic ductal adenocarcinoma (PDAC) field has been whether alternative genetic alterations could substitute for oncogenic KRAS mutations in initiating malignancy. Here, we report that Neurofibromin1 (NF1) inactivation can bypass the requirement of mutant KRAS for PDAC pathogenesis. An in-depth analysis of PDAC databases reveals various genetic alterations in the NF1 locus, including nonsense mutations, which occur predominantly in tumors with wild-type KRAS. Genetic experiments demonstrate that NF1 ablation culminates in acinar-to-ductal metaplasia, an early step in PDAC. Furthermore, NF1 haploinsufficiency results in a dramatic acceleration of KrasG12D-driven PDAC. Finally, we show an association between NF1 and p53 that is orchestrated by PML, and mosaic analysis with double markers demonstrates that concomitant inactivation of NF1 and Trp53 is sufficient to trigger full-blown PDAC. Together, these findings open up an exploratory framework for apprehending the mechanistic paradigms of PDAC with normal KRAS, for which no effective therapy is available.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patología , Mutación , Conductos Pancreáticos/patología , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Proteínas Proto-Oncogénicas p21(ras)/genética , Neurofibromina 1/metabolismo , Neoplasias Pancreáticas
6.
Front Cell Dev Biol ; 10: 926322, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36111347

RESUMEN

Epithelial-mesenchymal transition is associated with migration, invasion, and metastasis. The translation at the tissue scale of these changes has not yet been enlightened while being essential in the understanding of tumor progression. Thus, biophysical tools dedicated to measurements on model tumor systems are needed to reveal the impact of epithelial-mesenchymal transition at the collective cell scale. Herein, using an original biophysical approach based on magnetic nanoparticle insertion inside cells, we formed and flattened multicellular aggregates to explore the consequences of the loss of the metastasis suppressor NME1 on the mechanical properties at the tissue scale. Multicellular spheroids behave as viscoelastic fluids, and their equilibrium shape is driven by surface tension as measured by their deformation upon magnetic field application. In a model of breast tumor cells genetically modified for NME1, we correlated tumor invasion, migration, and adhesion modifications with shape maintenance properties by measuring surface tension and exploring both invasive and migratory potential as well as adhesion characteristics.

7.
Mol Cell Proteomics ; 20: 100173, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34740826

RESUMEN

RNF111/Arkadia is an E3 ubiquitin ligase that activates the transforming growth factor-ß (TGF-ß) pathway by degrading transcriptional repressors SKIL/SnoN and SKI. Truncations of the RING C-terminal domain of RNF111 that abolish its E3 function and subsequently activate TGF-ß signaling are observed in some cancers. In the present study, we sought to perform a comprehensive analysis of RNF111 endogenous substrates upon TGF-ß signaling activation using an integrative proteomic approach. In that aim, we carried out label-free quantitative proteomics after the enrichment of ubiquitylated proteins (ubiquitylome) in parental U2OS cell line compared with U2OS CRISPR engineered clones expressing a truncated form of RNF111 devoid of its C-terminal RING domain. We compared two methods of enrichment for ubiquitylated proteins before proteomics analysis by mass spectrometry, the diGlycine (diGly) remnant peptide immunoprecipitation with a K-ε-GG antibody, and a novel approach using protein immunoprecipitation with a ubiquitin pan nanobody that recognizes all ubiquitin chains and monoubiquitylation. Although we detected SKIL ubiquitylation among 108 potential RNF111 substrates with the diGly method, we found that the ubiquitin pan nanobody method also constitutes a powerful approach because it enabled the detection of 52 potential RNF111 substrates including SKI, SKIL, and RNF111. Integrative comparison of the RNF111-dependent proteome and ubiquitylomes enabled the identification of SKI and SKIL as the only targets ubiquitylated and degraded by RNF111 E3 ligase function in the presence of TGF-ß. Our results indicate that lysine 343 localized in the SAND domain of SKIL constitutes a target for RNF111 ubiquitylation and demonstrate that RNF111 E3 ubiquitin ligase function specifically targets SKI and SKIL ubiquitylation and degradation upon TGF-ß pathway activation.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Línea Celular , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas Nucleares/genética , Proteoma/metabolismo , Proteínas Proto-Oncogénicas/genética , Transducción de Señal , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación
8.
Life Sci Alliance ; 3(6)2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32371554

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is a lethal disease that remains incurable because of late diagnosis, which renders any therapeutic intervention challenging. Most PDAC patients develop de novo diabetes, which exacerbates their morbidity and mortality. How PDAC triggers diabetes is still unfolding. Using a mouse model of KrasG12D-driven PDAC, which faithfully recapitulates the progression of the human disease, we observed a massive and selective depletion of ß-cells, occurring very early at the stages of preneoplastic lesions. Mechanistically, we found that increased TGF beta (TGF-ß) signaling during PDAC progression caused erosion of ß-cell mass through apoptosis. Suppressing TGF-ß signaling, either pharmacologically through TGF-ß immunoneutralization or genetically through deletion of Smad4 or TGF-ß type II receptor (TßRII), afforded substantial protection against PDAC-driven ß-cell depletion. From a translational perspective, both activation of TGF-ß signaling and depletion of ß-cells frequently occur in human PDAC, providing a mechanistic explanation for the pathogenesis of diabetes in PDAC patients, and further implicating new-onset diabetes as a potential early prognostic marker for PDAC.


Asunto(s)
Carcinoma Ductal Pancreático/complicaciones , Carcinoma Ductal Pancreático/metabolismo , Diabetes Mellitus/etiología , Células Secretoras de Insulina/metabolismo , Neoplasias Pancreáticas/complicaciones , Neoplasias Pancreáticas/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Factor de Crecimiento Transformador beta1/metabolismo , Animales , Anticuerpos Neutralizantes/farmacología , Apoptosis/efectos de los fármacos , Apoptosis/genética , Células Cultivadas , Diabetes Mellitus/metabolismo , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Eliminación de Gen , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Pronóstico , Receptor Tipo II de Factor de Crecimiento Transformador beta/genética , Proteína Smad4/genética , Factor de Crecimiento Transformador beta1/inmunología , Factor de Crecimiento Transformador beta1/farmacología
9.
EMBO J ; 38(13): e101067, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-31268604

RESUMEN

A prominent function of TGIF1 is suppression of transforming growth factor beta (TGF-ß) signaling, whose inactivation is deemed instrumental to the progression of pancreatic ductal adenocarcinoma (PDAC), as exemplified by the frequent loss of the tumor suppressor gene SMAD4 in this malignancy. Surprisingly, we found that genetic inactivation of Tgif1 in the context of oncogenic Kras, KrasG12D , culminated in the development of highly aggressive and metastatic PDAC despite de-repressing TGF-ß signaling. Mechanistic experiments show that TGIF1 associates with Twist1 and inhibits Twist1 expression and activity, and this function is suppressed in the vast majority of human PDACs by KrasG12D /MAPK-mediated TGIF1 phosphorylation. Ablating Twist1 in KrasG12D ;Tgif1KO mice completely blunted PDAC formation, providing the proof-of-principle that TGIF1 restrains KrasG12D -driven PDAC through its ability to antagonize Twist1. Collectively, these findings pinpoint TGIF1 as a potential tumor suppressor in PDAC and further suggest that sustained activation of TGF-ß signaling might act to accelerate PDAC progression rather than to suppress its initiation.


Asunto(s)
Carcinoma Ductal Pancreático/patología , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Proteínas Nucleares/metabolismo , Neoplasias Pancreáticas/patología , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Proteína 1 Relacionada con Twist/metabolismo , Animales , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Línea Celular Tumoral , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Regulación Neoplásica de la Expresión Génica , Humanos , Ratones , Metástasis de la Neoplasia , Proteínas Nucleares/genética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Transducción de Señal , Factor de Crecimiento Transformador beta/metabolismo , Proteína 1 Relacionada con Twist/genética
10.
Dev Cell ; 45(6): 712-725.e6, 2018 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-29920276

RESUMEN

Cancer cachexia is characterized by extreme skeletal muscle loss that results in high morbidity and mortality. The incidence of cachexia varies among tumor types, being lowest in sarcomas, whereas 90% of pancreatic ductal adenocarcinoma (PDAC) patients experience severe weight loss. How these tumors trigger muscle depletion is still unfolding. Serendipitously, we found that overexpression of Twist1 in mouse muscle progenitor cells, either constitutively during development or inducibly in adult animals, caused severe muscle atrophy with features reminiscent of cachexia. Using several genetic mouse models of PDAC, we detected a marked increase in Twist1 expression in muscle undergoing cachexia. In cancer patients, elevated levels of Twist1 are associated with greater degrees of muscle wasting. Finally, both genetic and pharmacological inactivation of Twist1 in muscle progenitor cells afforded substantial protection against cancer-mediated cachexia, which translated into meaningful survival benefits, implicating Twist1 as a possible target for attenuating muscle cachexia in cancer patients.


Asunto(s)
Caquexia/metabolismo , Células Musculares/metabolismo , Atrofia Muscular/metabolismo , Proteínas Nucleares/metabolismo , Células Madre/metabolismo , Proteína 1 Relacionada con Twist/metabolismo , Animales , Caquexia/patología , Línea Celular Tumoral , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Células HEK293 , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Células Musculares/citología , Músculo Esquelético/metabolismo , Atrofia Muscular/genética , Mioblastos/metabolismo , Transducción de Señal , Células Madre/citología
11.
Nat Commun ; 9(1): 1216, 2018 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-29572483

RESUMEN

Transforming growth factor-ß (TGFß) signaling is initiated by the type I, II TGFß receptor (TßRI/TßRII) complex. Here we report the formation of an alternative complex between TßRI and the orphan GPR50, belonging to the G protein-coupled receptor super-family. The interaction of GPR50 with TßRI induces spontaneous TßRI-dependent Smad and non-Smad signaling by stabilizing the active TßRI conformation and competing for the binding of the negative regulator FKBP12 to TßRI. GPR50 overexpression in MDA-MB-231 cells mimics the anti-proliferative effect of TßRI and decreases tumor growth in a xenograft mouse model. Inversely, targeted deletion of GPR50 in the MMTV/Neu spontaneous mammary cancer model shows decreased survival after tumor onset and increased tumor growth. Low GPR50 expression is associated with poor survival prognosis in human breast cancer irrespective of the breast cancer subtype. This describes a previously unappreciated spontaneous TGFß-independent activation mode of TßRI and identifies GPR50 as a TßRI co-receptor with potential impact on cancer development.


Asunto(s)
Neoplasias Mamarias Animales/prevención & control , Proteínas del Tejido Nervioso/fisiología , Receptor Tipo I de Factor de Crecimiento Transformador beta/fisiología , Receptores Acoplados a Proteínas G/fisiología , Animales , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Proliferación Celular , Endosomas/metabolismo , Femenino , Perfilación de la Expresión Génica , Células HEK293 , Células HeLa , Humanos , Neoplasias Mamarias Animales/metabolismo , Ratones , Ratones Endogámicos C57BL , Trasplante de Neoplasias , Proteínas del Tejido Nervioso/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Receptores Acoplados a Proteínas G/genética , Transducción de Señal , Proteínas Smad/metabolismo , Proteína 1A de Unión a Tacrolimus/metabolismo
12.
J Cyst Fibros ; 17(2): 190-203, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29239766

RESUMEN

BACKGROUND: Cystic fibrosis (CF) lung disease severity is highly variable and dependent on several factors including genetic modifiers. Family with sequence similarity 13 member A (FAM13A) has been previously associated with lung function in the general population as well as in several chronic lung diseases, such as chronic obstructive pulmonary disease (COPD), we examined whether FAM13A is a modifier gene of CF lung phenotype. We also studied how FAM13A may contribute to the physiopathological mechanisms associated with CF. METHODS: We investigated the association of FAM13A with lung function in CF French patients (n=1222) by SNP-wise analysis and Versatile Gene Based Association Study. We also analyzed the consequences of FAM13A knockdown in A549 cells and primary bronchial epithelial cells from CF patients. RESULTS: We found that FAM13A is associated with lung function in CF patients. Utilizing lung epithelial A549 cells and primary human bronchial epithelial cells from CF patients we observed that IL-1ß and TGFß reduced FAM13A expression. Knockdown of FAM13A was associated with increased RhoA activity, induction of F-actin stress fibers and regulation of epithelial-mesenchymal transition markers such as E-cadherin, α-smooth muscle actin and vimentin. CONCLUSION: Our data show that FAM13A is a modifier gene of CF lung phenotype regulating RhoA activity, actin cytoskeleton dynamics and epithelial-mesenchymal transition.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Fibrosis Quística/genética , Transición Epitelial-Mesenquimal/fisiología , Proteínas Activadoras de GTPasa/genética , Genes Modificadores/genética , Proteína de Unión al GTP rhoA/metabolismo , Adolescente , Adulto , Niño , Fibrosis Quística/complicaciones , Fibrosis Quística/metabolismo , Femenino , Francia , Humanos , Masculino , Persona de Mediana Edad , Fenotipo , Adulto Joven
13.
J Biol Chem ; 290(34): 21007-21018, 2015 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-26152726

RESUMEN

Although E3 ubiquitin ligases are deemed to play key roles in normal cell function and homeostasis, whether their alterations contribute to cancer pathogenesis remains unclear. In this study, we sought to investigate potential mechanisms that govern WWP1/Tiul1 (WWP1) ubiquitin ligase activity, focusing on its ability to trigger degradation of TGFß type I receptor (TßRI) in conjunction with Smad7. Our data reveal that the WWP1 protein is very stable at steady states because its autopolyubiquitination activity is silenced due to an intra-interaction between the C2 and/or WW and Hect domains that favors WWP1 monoubiquitination at the expense of its polyubiquitination or polyubiquitination of TßRI. Upon binding of WWP1 to Smad7, this functional interplay is disabled, switching its monoubiquitination activity toward a polyubiquitination activity, thereby driving its own degradation and that of TßRI as well. Intriguingly, a WWP1 point mutation found in human prostate cancer disrupts this regulatory mechanism by relieving the inhibitory effects of C2 and WW on Hect and thereby causing WWP1 hyperactivation. That cancer-driven alteration of WWP1 culminates in excessive TßRI degradation and attenuated TGFß cytostatic signaling, a consequence that could conceivably confer tumorigenic properties to WWP1.


Asunto(s)
Carcinogénesis/metabolismo , Regulación Neoplásica de la Expresión Génica , Mutación Puntual , Proteínas Serina-Treonina Quinasas/metabolismo , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Carcinogénesis/genética , Carcinogénesis/patología , Células HEK293 , Células HeLa , Humanos , Células MCF-7 , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Proteínas Serina-Treonina Quinasas/genética , Receptor Tipo I de Factor de Crecimiento Transformador beta , Receptores de Factores de Crecimiento Transformadores beta/genética , Transducción de Señal , Proteína smad7/genética , Proteína smad7/metabolismo , Factor de Crecimiento Transformador beta1/genética , Ubiquitina-Proteína Ligasas/química , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación
14.
Cancer Cell ; 27(4): 547-60, 2015 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-25873176

RESUMEN

Many types of human cancers having hyperactivated Wnt signaling display no causative alterations in known effectors of this pathway. Here, we report a function of TGIF in Wnt signaling. TGIF associates with and diverts Axin1 and Axin2 from the ß-catenin destruction complex, therefore allowing ß-catenin accrual. Intriguingly, activation of Wnt signaling induces the expression of TGIF, which unveils a feed-forward loop that ensures effective integration of Wnt signaling. In triple-negative breast cancers (TNBC), elevated levels of TGIF correlate with high Wnt signaling and poor survival of patients. Moreover, genetic experiments revealed that Tgif1 ablation impeded mammary tumor development in MMTV-Wnt1 mice, further underscoring a requirement of TGIF for oncogenic Wnt signaling.


Asunto(s)
Proteínas de Homeodominio/fisiología , Neoplasias Mamarias Experimentales/metabolismo , Proteínas Represoras/fisiología , Vía de Señalización Wnt , Transporte Activo de Núcleo Celular , Animales , Proteína Axina/metabolismo , Proteínas de Homeodominio/metabolismo , Humanos , Ratones , Modelos Biológicos , Proteínas Represoras/metabolismo , beta Catenina/metabolismo
15.
Cell Rep ; 10(6): 883-890, 2015 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-25683711

RESUMEN

PHRF1 functions as an essential component of the TGF-ß tumor suppressor pathway by triggering degradation of the homeodomain repressor factor TGIF. This leads to redistribution of cPML into the cytoplasm, where it coordinates phosphorylation and activation of Smad2 by the TGF-ß receptor. In acute promyelocytic leukemia (APL), acquisition of PML-RARα is known to impede critical aspects of TGF-ß signaling, including myeloid differentiation. Although these defects are thought to rely on suppression of cPML activity, the mechanisms underlying this phenomenon remain enigmatic. Here, we find that an abnormal function of PML-RARα is to interfere with TGIF breakdown, presumably by competing with PHRF1 for binding to TGIF, culminating in cPML sequestration and inactivation. Enforcing PHRF1 activity is sufficient to restore TGF-ß cytostatic signaling in human blasts and suppress APL formation in a mouse model of APL, providing proof-of-concept data that suppression of PHRF1 activity by PML-RARα represents a critical determinant in APL pathogenesis.

16.
Cell Rep ; 4(3): 530-41, 2013 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-23911286

RESUMEN

The homeodomain protein TGIF (TG-interacting factor) restricts TGF-ß/Smad cytostatic signaling by interfering with the nucleocytoplasmic transit of the tumor suppressor cPML. Here, we identify PHRF1 as a ubiquitin ligase that enforces TGIF decay by driving its ubiquitination at lysine 130. In so doing, PHRF1 ensures redistribution of cPML into the cytoplasm, where it associates with SARA and coordinates activation of Smad2 by the TGF-ß receptor. The PHRF1 gene resides within the tumor suppressor locus 11p15.5, which displays frequent loss in a wide variety of malignancies, including breast cancer. Remarkably, we found that the PHRF1 gene is deleted or silenced in a high proportion of human breast cancer samples and cancer cell lines. Reconstitution of PHRF1 into deficient cells impeded their propensity to form tumors in vivo, most likely because of the reemergence of TGF-ß responsiveness. These findings unveil a paradigm behind inactivation of the cPML tumor suppressor network in human malignancies.


Asunto(s)
Neoplasias de la Mama/genética , Factor 7 Regulador del Interferón/genética , Proteínas Nucleares/metabolismo , Factores de Transcripción/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Proteínas Supresoras de Tumor/genética , Animales , Neoplasias de la Mama/metabolismo , Perros , Femenino , Genes Supresores de Tumor , Células Hep G2 , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Factor 7 Regulador del Interferón/metabolismo , Células de Riñón Canino Madin Darby , Proteínas Nucleares/genética , Fosforilación , Proteína de la Leucemia Promielocítica , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Transducción de Señal , Factores de Transcripción/genética , Transcripción Genética , Transfección , Factor de Crecimiento Transformador beta/genética , Proteínas Supresoras de Tumor/metabolismo , Ubiquitinación
17.
Mol Cell Biol ; 31(7): 1459-69, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21262769

RESUMEN

CCN5 is a member of the CCN (connective tissue growth factor/cysteine-rich 61/nephroblastoma overexpressed) family and was identified as an estrogen-inducible gene in estrogen receptor-positive cell lines. However, the role of CCN5 in breast carcinogenesis remains unclear. We report here that the CCN5 protein is localized mostly in the cytoplasm and in part in the nucleus of human tumor breast tissue. Using a heterologous transcription assay, we demonstrate that CCN5 can act as a transcriptional repressor presumably through association with histone deacetylase 1 (HDAC1). Microarray gene expression analysis showed that CCN5 represses expression of genes associated with epithelial-mesenchymal transition (EMT) as well as expression of key components of the transforming growth factor ß (TGF-ß) signaling pathway, prominent among them TGF-ßRII receptor. We show that CCN5 is recruited to the TGF-ßRII promoter, thereby providing a mechanism by which CCN5 restricts transcription of the TGF-ßRII gene. Consistent with this finding, CCN5, we found, functions to suppress TGF-ß-induced transcriptional responses and invasion that is concomitant with EMT. Thus, our data uncovered CCN5 as a novel transcriptional repressor that plays an important role in regulating tumor progression functioning, at least in part, by inhibiting the expression of genes involved in the TGF-ß signaling cascade that is known to promote EMT.


Asunto(s)
Péptidos y Proteínas de Señalización Intercelular/metabolismo , Proteínas Represoras/metabolismo , Transducción de Señal , Factores de Transcripción/metabolismo , Transcripción Genética , Factor de Crecimiento Transformador beta/metabolismo , Proteínas CCN de Señalización Intercelular , Cadherinas/metabolismo , Línea Celular Tumoral , Regulación hacia Abajo/genética , Femenino , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Silenciador del Gen , Histona Desacetilasas/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intercelular/química , Invasividad Neoplásica , Regiones Promotoras Genéticas/genética , Unión Proteica , Proteínas Serina-Treonina Quinasas/genética , Estructura Terciaria de Proteína , Transporte de Proteínas , Receptor Tipo II de Factor de Crecimiento Transformador beta , Receptores de Factores de Crecimiento Transformadores beta/genética , Proteínas Represoras/química , Fracciones Subcelulares/metabolismo , Factores de Transcripción/química , Factor de Crecimiento Transformador beta/genética
18.
Cancer Res ; 70(21): 8457-66, 2010 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-20959473

RESUMEN

The oncoprotein c-Ski has been implicated in the negative regulation of transforming growth factor-ß (TGF-ß) signaling owing to its ability to repress Smad transcriptional activity via recruitment of a transcriptional corepressor complex containing histone deacetylases. However, c-Ski has also been shown to localize to the cytoplasm, raising the interesting possibility that it might disable TGF-ß signaling through alternative mechanisms. Here, we provide evidence that c-Ski can restrict TGF-ß signaling by interacting directly with the activated TGF-ß type I receptor (TßRI). We explored the physiologic relevance of the c-Ski/TßRI interaction and found that it can culminate in a constitutive association of TßRI with a nonfunctional R-Smad/Smad4 complex. Based on these findings, we hypothesize that the interaction between c-Ski and TßRI might interfere with nuclear translocation of the R-Smad/Smad4 complex, thereby attenuating TGF-ß signaling. Such a mechanism may play a crucial role in tumor progression, because many tumors that express high levels of c-Ski also display impaired nuclear accumulation of Smads.


Asunto(s)
Adenocarcinoma/metabolismo , Neoplasias de la Mama/metabolismo , Proteínas de Unión al ADN/fisiología , Neoplasias Pulmonares/metabolismo , Melanoma/metabolismo , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Proto-Oncogénicas/fisiología , Receptores de Factores de Crecimiento Transformadores beta/antagonistas & inhibidores , Adenocarcinoma/patología , Neoplasias de la Mama/patología , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Femenino , Humanos , Técnicas para Inmunoenzimas , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Neoplasias Pulmonares/patología , Melanoma/secundario , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo , Transporte de Proteínas , Proteínas Proto-Oncogénicas/metabolismo , Receptor Tipo I de Factor de Crecimiento Transformador beta , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Transducción de Señal , Piel/metabolismo , Piel/patología , Proteínas Smad Reguladas por Receptores/metabolismo , Proteína Smad2/metabolismo , Proteína smad3/metabolismo , Análisis de Matrices Tisulares , Factor de Crecimiento Transformador beta/metabolismo , Células Tumorales Cultivadas
19.
Mol Cell ; 36(6): 1073-85, 2009 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-20064471

RESUMEN

The homeodomain protein TGIF functions as a negative regulator of multiple classes of transcription factors. Here we report on the characterization of TGIF as an essential component of the tumor necrosis factor alpha (TNF-alpha) cytotoxic program. This proapoptotic role of TGIF does not appear to rely on transcriptional modulation but instead is executed in conjunction with Itch/AIP4, an E3 ubiquitin ligase operating in TNF-alpha-induced apoptosis through its ability to target the caspase antagonist cFlip(L) for degradation. Notably, we found that activation of TNF-alpha signaling induced the association of TGIF with Itch/AIP4, resulting in increased accessibility of cFlip(L) for association and ubiquitination by Itch/AIP4. Moreover, we show that Itch/AIP4 can also stabilize the TGIF protein in response to TNF-alpha by triggering its monoubiquitination at lysine 259, thereby revealing the existence of a functional network that can evolve into a positive feedback loop for ensuring effective execution of the TNF-alpha apoptotic signaling.


Asunto(s)
Muerte Celular/efectos de los fármacos , Proteínas de Homeodominio/farmacología , Proteínas Represoras/farmacología , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Proteína Reguladora de Apoptosis Similar a CASP8 y FADD/genética , Proteína Reguladora de Apoptosis Similar a CASP8 y FADD/metabolismo , Línea Celular , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Lisina/metabolismo , Ratones , Ratones Noqueados , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Transducción de Señal/fisiología , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación
20.
EMBO J ; 27(13): 1804-15, 2008 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-18511908

RESUMEN

The TGIF homoeodomain protein functions as an important negative regulator in the TGF-beta signalling pathway. The inhibitory function of TGIF is executed in part through its ability to sequester the tumour suppressor cytoplasmic promyelocytic leukaemia (cPML) in the nucleus, thereby preventing the phosphorylation of Smad2 by the activated TGF-beta type I receptor. Here, we report on the identification of PCTA (PML competitor for TGIF association), a TGIF antagonist that promotes TGF-beta-induced transcriptional and cytostatic responses. We provide evidence that PCTA functions in TGF-beta signalling by relieving the suppression of Smad2 phosphorylation by TGIF. Furthermore, we demonstrate that PCTA selectively competes with cPML for TGIF association, resulting in the accumulation of cPML in the cytoplasm, where it associates with SARA and coordinates the access of Smad2 for phosphorylation by the activated TGF-beta type I receptor. Thus, our findings on the mode of action of PCTA provide new and important insights into the molecular mechanism underlying the antagonistic interplay between TGIF and cPML in the TGF-beta signalling network.


Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas de Homeodominio/antagonistas & inhibidores , Proteínas Nucleares/metabolismo , Proteínas Represoras/antagonistas & inhibidores , Proteína Smad2/metabolismo , Factores de Transcripción/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Animales , Línea Celular , ADN Complementario , Perros , Femenino , Biblioteca de Genes , Humanos , Fosforilación , Placenta/metabolismo , Proteína de la Leucemia Promielocítica , Técnicas del Sistema de Dos Híbridos , Ubiquitina-Proteína Ligasas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...