Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Nucleic Acids Res ; 52(7): e35, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38381903

RESUMEN

Nucleoside analogues like 4-thiouridine (4sU) are used to metabolically label newly synthesized RNA. Chemical conversion of 4sU before sequencing induces T-to-C mismatches in reads sequenced from labelled RNA, allowing to obtain total and labelled RNA expression profiles from a single sequencing library. Cytotoxicity due to extended periods of labelling or high 4sU concentrations has been described, but the effects of extensive 4sU labelling on expression estimates from nucleotide conversion RNA-seq have not been studied. Here, we performed nucleotide conversion RNA-seq with escalating doses of 4sU with short-term labelling (1h) and over a progressive time course (up to 2h) in different cell lines. With high concentrations or at later time points, expression estimates were biased in an RNA half-life dependent manner. We show that bias arose by a combination of reduced mappability of reads carrying multiple conversions, and a global, unspecific underrepresentation of labelled RNA emerging during library preparation and potentially global reduction of RNA synthesis. We developed a computational tool to rescue unmappable reads, which performed favourably compared to previous read mappers, and a statistical method, which could fully remove remaining bias. All methods developed here are freely available as part of our GRAND-SLAM pipeline and grandR package.


Asunto(s)
RNA-Seq , Tiouridina , Tiouridina/metabolismo , Tiouridina/química , RNA-Seq/métodos , Humanos , ARN/genética , Análisis de Secuencia de ARN/métodos , Nucleótidos/genética
2.
Autoimmun Rev ; 22(11): 103452, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37742748

RESUMEN

Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a devastating disease affecting millions of people worldwide. Due to the 2019 pandemic of coronavirus disease (COVID-19), we are facing a significant increase of ME/CFS prevalence. On May 11th to 12th, 2023, the second international ME/CFS conference of the Charité Fatigue Center was held in Berlin, Germany, focusing on pathomechanisms, diagnosis, and treatment. During the two-day conference, more than 100 researchers from various research fields met on-site and over 700 attendees participated online to discuss the state of the art and novel findings in this field. Key topics from the conference included: the role of the immune system, dysfunction of endothelial and autonomic nervous system, and viral reactivation. Furthermore, there were presentations on innovative diagnostic measures and assessments for this complex disease, cutting-edge treatment approaches, and clinical studies. Despite the increased public attention due to the COVID-19 pandemic, the subsequent rise of Long COVID-19 cases, and the rise of funding opportunities to unravel the pathomechanisms underlying ME/CFS, this severe disease remains highly underresearched. Future adequately funded research efforts are needed to further explore the disease etiology and to identify diagnostic markers and targeted therapies.


Asunto(s)
Síndrome de Fatiga Crónica , Humanos , Síndrome de Fatiga Crónica/diagnóstico , Síndrome de Fatiga Crónica/epidemiología , Síndrome de Fatiga Crónica/terapia , Pandemias , Síndrome Post Agudo de COVID-19 , Prevalencia
3.
medRxiv ; 2023 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-37425897

RESUMEN

Myalgic Encephalomyelitis/ Chronic Fatigue syndrome (ME/CFS) is a complex, debilitating, long-term illness without a diagnostic biomarker. ME/CFS patients share overlapping symptoms with long COVID patients, an observation which has strengthened the infectious origin hypothesis of ME/CFS. However, the exact sequence of events leading to disease development is largely unknown for both clinical conditions. Here we show antibody response to herpesvirus dUTPases, particularly to that of Epstein-Barr virus (EBV) and HSV-1, increased circulating fibronectin (FN1) levels in serum and depletion of natural IgM against fibronectin ((n)IgM-FN1) are common factors for both severe ME/CFS and long COVID. We provide evidence for herpesvirus dUTPases-mediated alterations in host cell cytoskeleton, mitochondrial dysfunction and OXPHOS. Our data show altered active immune complexes, immunoglobulin-mediated mitochondrial fragmentation as well as adaptive IgM production in ME/CFS patients. Our findings provide mechanistic insight into both ME/CFS and long COVID development. Finding of increased circulating FN1 and depletion of (n)IgM-FN1 as a biomarker for the severity of both ME/CFS and long COVID has an immediate implication in diagnostics and development of treatment modalities.

4.
PLoS Pathog ; 19(5): e1010992, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37172056

RESUMEN

The genomes of both human cytomegalovirus (HCMV) and murine cytomegalovirus (MCMV) were first sequenced over 20 years ago. Similar to HCMV, the MCMV genome had initially been proposed to harbor ≈170 open reading frames (ORFs). More recently, omics approaches revealed HCMV gene expression to be substantially more complex comprising several hundred viral ORFs. Here, we provide a state-of-the art reannotation of lytic MCMV gene expression based on integrative analysis of a large set of omics data. Our data reveal 365 viral transcription start sites (TiSS) that give rise to 380 and 454 viral transcripts and ORFs, respectively. The latter include >200 small ORFs, some of which represented the most highly expressed viral gene products. By combining TiSS profiling with metabolic RNA labelling and chemical nucleotide conversion sequencing (dSLAM-seq), we provide a detailed picture of the expression kinetics of viral transcription. This not only resulted in the identification of a novel MCMV immediate early transcript encoding the m166.5 ORF, which we termed ie4, but also revealed a group of well-expressed viral transcripts that are induced later than canonical true late genes and contain an initiator element (Inr) but no TATA- or TATT-box in their core promoters. We show that viral upstream ORFs (uORFs) tune gene expression of longer viral ORFs expressed in cis at translational level. Finally, we identify a truncated isoform of the viral NK-cell immune evasin m145 arising from a viral TiSS downstream of the canonical m145 mRNA. Despite being ≈5-fold more abundantly expressed than the canonical m145 protein it was not required for downregulating the NK cell ligand, MULT-I. In summary, our work will pave the way for future mechanistic studies on previously unknown cytomegalovirus gene products in an important virus animal model.


Asunto(s)
Muromegalovirus , Animales , Ratones , Humanos , Citomegalovirus/genética , Citomegalovirus/metabolismo , Secuencia de Bases , Proteínas Virales/genética , Proteínas Virales/metabolismo , Sistemas de Lectura Abierta
5.
Nature ; 605(7910): 539-544, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35508655

RESUMEN

Herpesviruses have mastered host cell modulation and immune evasion to augment productive infection, life-long latency and reactivation1,2. A long appreciated, yet undefined relationship exists between the lytic-latent switch and viral non-coding RNAs3,4. Here we identify viral microRNA (miRNA)-mediated inhibition of host miRNA processing as a cellular mechanism that human herpesvirus 6A (HHV-6A) exploits to disrupt mitochondrial architecture, evade intrinsic host defences and drive the switch from latent to lytic virus infection. We demonstrate that virus-encoded miR-aU14 selectively inhibits the processing of multiple miR-30 family members by direct interaction with the respective primary (pri)-miRNA hairpin loops. Subsequent loss of miR-30 and activation of the miR-30-p53-DRP1 axis triggers a profound disruption of mitochondrial architecture. This impairs induction of type I interferons and is necessary for both productive infection and virus reactivation. Ectopic expression of miR-aU14 triggered virus reactivation from latency, identifying viral miR-aU14 as a readily druggable master regulator of the herpesvirus lytic-latent switch. Our results show that miRNA-mediated inhibition of miRNA processing represents a generalized cellular mechanism that can be exploited to selectively target individual members of miRNA families. We anticipate that targeting miR-aU14 will provide new therapeutic options for preventing herpesvirus reactivations in HHV-6-associated disorders.


Asunto(s)
Herpesviridae , MicroARNs , Herpesviridae/genética , Herpesviridae/metabolismo , Humanos , Evasión Inmune , MicroARNs/genética , MicroARNs/metabolismo , Interferencia de ARN , Procesamiento Postranscripcional del ARN , Latencia del Virus/genética
6.
Front Microbiol ; 13: 840911, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35222346

RESUMEN

Viruses play a key role in explaining the pathogenesis of various autoimmune disorders, whose underlying principle is defined by the activation of autoreactive T-cells. In many cases, T-cells escape self-tolerance due to the failure in encountering certain MHC-I self-peptide complexes at substantial levels, whose peptides remain invisible from the immune system. Over the years, contribution of unstable defective ribosomal products (DRiPs) in immunosurveillance has gained prominence. A class of unstable products emerge from non-canonical translation and processing of unannotated mammalian and viral ORFs and their peptides are cryptic in nature. Indeed, high throughput sequencing and proteomics have revealed that a substantial portion of our genomes comprise of non-canonical ORFs, whose generation is significantly modulated during disease. Many of these ORFs comprise short ORFs (sORFs) and upstream ORFs (uORFs) that resemble DRiPs and may hence be preferentially presented. Here, we discuss how such products, normally "hidden" from the immune system, become abundant in viral infections activating autoimmune T-cells, by discussing their emerging role in infection and disease. Finally, we provide a perspective on how these mechanisms can explain several autoimmune disorders in the wake of the COVID-19 pandemic.

7.
Front Mol Biosci ; 9: 1044964, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36589231

RESUMEN

First exposure to various human herpesviruses (HHVs) including HHV-6, HCMV and EBV does not cause a life-threatening disease. In fact, most individuals are frequently unaware of their first exposure to such pathogens. These herpesviruses acquire lifelong latency in the human body where they show minimal genomic activity required for their survival. We hypothesized that it is not the latency itself but a timely, regionally restricted viral reactivation in a sub-set of host cells that plays a key role in disease development. HHV-6 (HHV-6A and HHV-6B) and HHV-7 are unique HHVs that acquire latency by integration of the viral genome into sub-telomeric region of human chromosomes. HHV-6 reactivation has been linked to Alzheimer's Disease, Chronic Fatigue Syndrome, and many other diseases. However, lack of viral activity in commonly tested biological materials including blood or serum strongly suggests tissue specific localization of active HHV-6 genome. Here in this paper, we attempted to analyze active HHV-6 transcripts in postmortem tissue biopsies from a small cohort of ME/CFS patients and matched controls by fluorescence in situ hybridization using a probe against HHV-6 microRNA (miRNA), miR-aU14. Our results show abundant viral miRNA in various regions of the human brain and associated neuronal tissues including the spinal cord that is only detected in ME/CFS patients and not in controls. Our findings provide evidence of tissue-specific active HHV-6 and EBV infection in ME/CFS, which along with recent work demonstrating a possible relationship between herpesvirus infection and ME/CFS, provide grounds for renewed discussion on the role of herpesviruses in ME/CFS.

8.
Clin Case Rep ; 9(2): 841-844, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33598255

RESUMEN

A sulfasalazine-induced DRESS (Drug Reactivation with Eosinophilia and Systemic Symptoms) was complicated by a Crohn's-like colitis. We demonstrated HHV-6 reactivation with presence of HHV-6 DNA and small noncoding RNA in colonic lesions. This observation confirms the major role of HHV-6 reactivation in DRESS manifestations and the importance of looking for HHV-6 reactivation in DRESS.

9.
J Pediatric Infect Dis Soc ; 10(5): 599-606, 2021 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-33491073

RESUMEN

BACKGROUND: Distinctions between HHV-6 primary infection in seronegative patients and HHV-6 reactivation in seropositive patients remains largely undescribed in pediatric liver transplant (LT) recipients. METHODS: We implemented pretransplant serology testing of HHV-6 in a large pediatric hospital and retrospectively assessed the incidence, manifestations and outcomes of HHV-6 infections over a 3-year period. RESULTS: Among 101 pediatric LT recipients, 96 had pretransplant HHV-6 serologies; 34 (35.4%) were seronegative and 62 (64.6%) seropositive. Posttransplantation, 8/25 (32%) seronegative patients had HHV-6 DNAemia (primary infection) compared to 2/48 (4%) seropositive patients (p=0.002). Compared to seropositive patients, seronegative patients with HHV-6 DNAemia were younger, and had symptoms of fever and/or elevated aminotransferases in association with higher viral loads, in the first month post-transplant. More than 90% of seronegative patients and 77.8% of seropositive patients had HHV-6 detected by PCR in liver biopsy obtained for concerns of allograft rejection, but most had no detectable concomitant DNAemia. Active replication of virus in the liver was confirmed by in situ hybridization in select cases. While HHV-6 infection occurred among patients on prophylaxis doses of antivirals for CMV, HHV-6 DNAemia and presenting symptoms resolved on treatment doses. CONCLUSIONS: HHV-6 DNA-emia occurred more frequently in seronegative pediatric LT recipients, usually in the early posttransplant period, and was subsequently detected in allograft biopsies. HHV-6 cannot be ruled out as a cause of hepatitis in the absence of allograft tissue testing and specialized virological assays, as HHV-6 may disrupt local allograft immune homeostasis while evading traditional screening methods using blood or plasma. The assessment of pre-transplant HHV-6 serological status may be important for risk stratification and post-transplant management of pediatric LT recipients.


Asunto(s)
Herpesvirus Humano 6 , Trasplante de Hígado , Niño , ADN Viral , Femenino , Humanos , Incidencia , Estudios Retrospectivos
10.
J Virol ; 95(3)2021 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-33148793

RESUMEN

Herpes simplex virus 1 (HSV-1) induces a profound host shutoff during lytic infection. The virion host shutoff (vhs) protein plays a key role in this process by efficiently cleaving host and viral mRNAs. Furthermore, the onset of viral DNA replication is accompanied by a rapid decline in host transcriptional activity. To dissect relative contributions of both mechanisms and elucidate gene-specific host transcriptional responses throughout the first 8 h of lytic HSV-1 infection, we used transcriptome sequencing of total, newly transcribed (4sU-labeled) and chromatin-associated RNA in wild-type (WT) and Δvhs mutant infection of primary human fibroblasts. Following virus entry, vhs activity rapidly plateaued at an elimination rate of around 30% of cellular mRNAs per hour until 8 h postinfection (p.i.). In parallel, host transcriptional activity dropped to 10 to 20%. While the combined effects of both phenomena dominated infection-induced changes in total RNA, extensive gene-specific transcriptional regulation was observable in chromatin-associated RNA and was surprisingly concordant between WT and Δvhs infections. Both induced strong transcriptional upregulation of a small subset of genes that were poorly expressed prior to infection but already primed by H3K4me3 histone marks at their promoters. Most interestingly, analysis of chromatin-associated RNA revealed vhs-nuclease-activity-dependent transcriptional downregulation of at least 150 cellular genes, in particular of many integrin adhesome and extracellular matrix components. This was accompanied by a vhs-dependent reduction in protein levels by 8 h p.i. for many of these genes. In summary, our study provides a comprehensive picture of the molecular mechanisms that govern cellular RNA metabolism during the first 8 h of lytic HSV-1 infection.IMPORTANCE The HSV-1 virion host shutoff (vhs) protein efficiently cleaves both host and viral mRNAs in a translation-dependent manner. In this study, we model and quantify changes in vhs activity, as well as virus-induced global loss of host transcriptional activity, during productive HSV-1 infection. In general, HSV-1-induced alterations in total RNA levels were dominated by these two global effects. In contrast, chromatin-associated RNA depicted gene-specific transcriptional changes. This revealed highly concordant transcriptional changes in WT and Δvhs infections, confirmed DUX4 as a key transcriptional regulator in HSV-1 infection, and identified vhs-dependent transcriptional downregulation of the integrin adhesome and extracellular matrix components. The latter explained seemingly gene-specific effects previously attributed to vhs-mediated mRNA degradation and resulted in a concordant loss in protein levels by 8 h p.i. for many of the respective genes.


Asunto(s)
Regulación Viral de la Expresión Génica , Herpes Simple/metabolismo , Herpesvirus Humano 1/fisiología , ARN Viral/metabolismo , Ribonucleasas/metabolismo , Proteínas Virales/metabolismo , Replicación Viral , Fibroblastos/metabolismo , Fibroblastos/virología , Herpes Simple/genética , Herpes Simple/patología , Herpes Simple/virología , Humanos , Biosíntesis de Proteínas , Proteoma , ARN Viral/genética , Ribonucleasas/genética , Transcriptoma , Proteínas Virales/genética
11.
Trends Microbiol ; 29(2): 92-97, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33288385

RESUMEN

Despite the international guidelines on the containment of the coronavirus disease 2019 (COVID-19) pandemic, the European scientific community was not sufficiently prepared to coordinate scientific efforts. To improve preparedness for future pandemics, we have initiated a network of nine European-funded Cooperation in Science and Technology (COST) Actions that can help facilitate inter-, multi-, and trans-disciplinary communication and collaboration.


Asunto(s)
Investigación Biomédica/organización & administración , COVID-19/virología , SARS-CoV-2/fisiología , Comunicación , Europa (Continente) , Humanos , Personal de Laboratorio , Pandemias , SARS-CoV-2/genética
12.
Ann Pediatr Cardiol ; 13(4): 301-308, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33311918

RESUMEN

OBJECTIVES: The aim of this study is to evaluate HHV-6 and PVB19 infection using polymerase chain reaction (PCR) and immunofluorescent assay (IFA) in the myocardium of pediatric patients with dilated cardiomyopathy (DCM) and the impact of viral persistence in the cardiac allograft after heart transplantation (HT). METHODS: Multiplex droplet digital PCR was used to analyze the prevalence of viral sequences in myocardial samples from 48 pediatric DCM patients and 10 control subjects. Of the 48 DCM patients, 44 underwent HT. After HT, consecutive endomyocardial biopsy (EMB) samples were analyzed for the presence of PVB19 and HHV-6 antigens using IFA and the patients were evaluated for rejections, coronary vasculopathy, and graft loss. RESULTS: Of the 48 DCM patients, 14 had positive viral PCR results in explanted/autopsy hearts. Among them, PVB19 was found in 8/48, HHV6 in 4/48, both PVB19 and HHV6 in 1/48, and enterovirus in one, but no adenovirus was found. The EMB samples obtained after HT were positive for PVB19 and HHV-6 in 7/44 and 3/44 cases, respectively. Viral presence in both the explanted heart and the cardiac allograft was demonstrated in 4 patients, 3 of whom were positive for PVB19, and one of whom was positive for HHV-6 pretransplant. Coronary vasculopathy and graft loss were more common in patients with PVB19-positive myocardial tissues versus those who were PVB19-negative. CONCLUSIONS: There is an association between PVB19 and HHV-6 infection and DCM in children. The study suggests the persistence of PVB19 and HHV-6 in the host can lead to subsequent viral reactivation in the transplanted heart, even in those recipients who do not have active myocarditis. PVB19 in the cardiac allograft tended toward higher adverse post-HT events.

13.
Pediatr Transplant ; 24(8): e13750, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32573886

RESUMEN

CMV infection remains a significant cause of morbidity among pediatric HTx recipients We explored the implications of CMV infection on post-transplant outcomes among CMV risk-stratified pediatric HTx recipients receiving VGC prophylaxis. Children who underwent HTx between January 2010 and October 2016 were stratified according to CMV risk at time of transplant and evaluated for evidence of post-transplant CMV infection, rejection, CAV, and graft loss. Among 97 children, 41 (42%) were considered HR or IR risk for CMV infection and received VGC prophylaxis. CMV DNAemia was observed in 34% of children, including 71% HR, 40% IR, and 18% LR individuals. Median time to CMV DNAemia following VGC prophylaxis was 32D among HR vs 277D in IR subjects (P = .042). No difference in overall graft loss was noted among groups, but CMV HR children had decreased rejection-free survival (3.5 years) compared to IR (6 years, P = .015) and LR children (8 years, P = .0003). CMV was noted on EMB in 13% of children but was not associated with increased CAV, rejection or graft loss. High-risk CMV status was associated with decreased time to CMV infection despite VGC prophylaxis, compared to IR, and decreased rejection-free survival times compared to both IR and LR recipients. Detection of CMV on EMB was not associated with increased rejection, CAV or graft loss. Additional studies are needed to explore the impact of CMV infection on rejection-free survival in HTx recipients.


Asunto(s)
Antivirales/uso terapéutico , Infecciones por Citomegalovirus/complicaciones , Infecciones por Citomegalovirus/tratamiento farmacológico , Rechazo de Injerto/prevención & control , Rechazo de Injerto/virología , Valganciclovir/uso terapéutico , Profilaxis Antibiótica , Niño , Preescolar , Femenino , Trasplante de Corazón , Humanos , Lactante , Masculino , Estudios Retrospectivos
14.
Am J Transplant ; 20(12): 3667-3672, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32428994

RESUMEN

Human herpesvirus (HHV)-6A can be inherited and chromosomally integrated (iciHHV-6A), and donor-to-recipient transmission has been reported in solid organ transplant. However, when HHV-6A reactivation happens after transplant, the source of HHV-6A is often not evident and its pathogenicity remains unclear. Here, we present an exhaustive case of donor-to-recipient transmission and reactivation of iciHHV-6A through kidney transplant. The absence of HHV-6A genome from the nails of the recipient excluded a recipient-related iciHHV-6A. Viral loads > 7 log10 copies/106 cells in donor blood samples and similarities of U38, U39, U69, and U100 viral genes between donor, recipient, and previously published iciHHV-6A strains are proof of donor-related transmission. Detection of noncoding HHV-6 snc-RNA14 using fluorescence in situ hybridization analysis and immunofluorescence staining of HHV-6A gp82/gp105 late proteins on kidney biopsies showed evidence of reactivation in the transplanted kidney. Because HHV-6A reactivation can be life threatening in immunocompromised patients, we provide several tools to help during the complete screening and diagnosis.


Asunto(s)
Herpesvirus Humano 6 , Trasplante de Riñón , ADN Viral , Herpesvirus Humano 6/genética , Humanos , Hibridación Fluorescente in Situ , Trasplante de Riñón/efectos adversos , Receptores de Trasplantes , Integración Viral
15.
Immunohorizons ; 4(4): 201-215, 2020 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-32327453

RESUMEN

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a multifactorial disorder with many possible triggers. Human herpesvirus (HHV)-6 and HHV-7 are two infectious triggers for which evidence has been growing. To understand possible causative role of HHV-6 in ME/CFS, metabolic and antiviral phenotypes of U2-OS cells were studied with and without chromosomally integrated HHV-6 and with or without virus reactivation using the histone deacetylase inhibitor trichostatin-A. Proteomic analysis was conducted by pulsed stable isotope labeling by amino acids in cell culture analysis. Antiviral properties that were induced by HHV-6 transactivation were studied in virus-naive A549 cells challenged by infection with influenza-A (H1N1) or HSV-1. Mitochondria were fragmented and 1-carbon metabolism, dUTPase, and thymidylate synthase were strongly induced by HHV-6 reactivation, whereas superoxide dismutase 2 and proteins required for mitochondrial oxidation of fatty acid, amino acid, and glucose metabolism, including pyruvate dehydrogenase, were strongly inhibited. Adoptive transfer of U2-OS cell supernatants after reactivation of HHV-6A led to an antiviral state in A549 cells that prevented superinfection with influenza-A and HSV-1. Adoptive transfer of serum from 10 patients with ME/CFS produced a similar fragmentation of mitochondria and the associated antiviral state in the A549 cell assay. In conclusion, HHV-6 reactivation in ME/CFS patients activates a multisystem, proinflammatory, cell danger response that protects against certain RNA and DNA virus infections but comes at the cost of mitochondrial fragmentation and severely compromised energy metabolism.


Asunto(s)
Traslado Adoptivo/métodos , Síndrome de Fatiga Crónica/sangre , Síndrome de Fatiga Crónica/virología , Herpes Simple/prevención & control , Herpesvirus Humano 1/fisiología , Herpesvirus Humano 6/genética , Subtipo H1N1 del Virus de la Influenza A/fisiología , Gripe Humana/prevención & control , Mitocondrias/virología , Fenotipo , Infecciones por Roseolovirus/inmunología , Activación Viral/fisiología , Células A549 , Adulto , ADN Viral/sangre , Síndrome de Fatiga Crónica/inmunología , Femenino , Herpes Simple/virología , Herpesvirus Humano 7/genética , Humanos , Inmunidad Innata , Gripe Humana/virología , Masculino , Persona de Mediana Edad , Mitocondrias/metabolismo , Mitocondrias/patología , Infecciones por Roseolovirus/sangre , Infecciones por Roseolovirus/virología , Adulto Joven
16.
Elife ; 92020 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-31944181

RESUMEN

Combining integrative genomics and systems biology approaches has revealed new and conserved features in the genome of human herpesvirus 6.


Asunto(s)
Herpesviridae , Herpesvirus Humano 6 , Genoma Viral , Genómica , Herpesviridae/genética , Humanos
17.
Nat Commun ; 11(1): 293, 2020 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-31941886

RESUMEN

Infection by viruses, including herpes simplex virus-1 (HSV-1), and cellular stresses cause widespread disruption of transcription termination (DoTT) of RNA polymerase II (RNAPII) in host genes. However, the underlying mechanisms remain unclear. Here, we demonstrate that the HSV-1 immediate early protein ICP27 induces DoTT by directly binding to the essential mRNA 3' processing factor CPSF. It thereby induces the assembly of a dead-end 3' processing complex, blocking mRNA 3' cleavage. Remarkably, ICP27 also acts as a sequence-dependent activator of mRNA 3' processing for viral and a subset of host transcripts. Our results unravel a bimodal activity of ICP27 that plays a key role in HSV-1-induced host shutoff and identify CPSF as an important factor that mediates regulation of transcription termination. These findings have broad implications for understanding the regulation of transcription termination by other viruses, cellular stress and cancer.


Asunto(s)
Herpesvirus Humano 1/patogenicidad , Interacciones Huésped-Patógeno/fisiología , Proteínas Inmediatas-Precoces/metabolismo , Terminación de la Transcripción Genética , Animales , Línea Celular , Factor de Especificidad de Desdoblamiento y Poliadenilación/metabolismo , Células HeLa , Herpes Simple/genética , Herpes Simple/virología , Herpesvirus Humano 1/genética , Interacciones Huésped-Patógeno/genética , Humanos , Proteínas Inmediatas-Precoces/genética , Proteínas Inmediatas-Precoces/fisiología , Procesamiento Postranscripcional del ARN , ARN Mensajero/genética
18.
J Med Virol ; 92(2): 241-250, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31579937

RESUMEN

BACKGROUND: Active infections of human herpesvirus 6B (HHV-6B) are frequent in immunocompromised recipients after transplantation. Nevertheless, they need to be distinguished from latent inherited chromosomally integrated genomes (iciHHV-6) present in about 1% of the population to avoid unnecessary administration of toxic antivirals. METHODS: A 5-year-old child presented with acute liver allograft rejection associated with HHV-6 DNA in plasma, which led to an unfavorable outcome. We investigated the possibility of HHV-6 infection derived from an iciHHV-6 present in the donor's liver using molecular and histopathology studies in various tissues, including quantification of HHV-6 DNA, genotyping, sequencing for antiviral resistance genes, relative quantification of viral transcripts, and detection of gB and gH viral proteins. RESULTS: The presence of iciHHV-6B was evidenced in the donor with signs of reactivation in the gallbladder and transplanted liver (detection of HHV-6B mRNA and late proteins). This localized expression could have played a role in liver rejection. Low viral loads in the recipient's plasma, with identical partial U39 sequences, were in favor of viral DNA released from the transplanted liver rather than a systemic infection. CONCLUSIONS: Determination of iciHHV-6 status before transplantation should be considered to guide clinical decisions, such as antiviral prophylaxis, viral load monitoring, and antiviral therapy.


Asunto(s)
Rechazo de Injerto/virología , Fallo Hepático/virología , Infecciones por Roseolovirus/diagnóstico , Aloinjertos/virología , Preescolar , Cromosomas Humanos/genética , Cromosomas Humanos/virología , ADN Viral/sangre , Resultado Fatal , Rechazo de Injerto/diagnóstico , Herpesvirus Humano 6/genética , Herpesvirus Humano 6/aislamiento & purificación , Humanos , Patrón de Herencia , Fallo Hepático/diagnóstico , Trasplante de Hígado , Infecciones por Roseolovirus/virología , Integración Viral
19.
Front Microbiol ; 10: 1021, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31231313

RESUMEN

Background/Objectives: With mucocutaneous candidiasis being highly prevalent in HIV patients, the emergence of fluconazole-resistant Candida species forms a major challenge in treating and eradicating these infections. The objective of this study was to establish the antifungal activity of K21, a membrane-rupturing antimicrobial compound derived from a silica quaternary ammonium compound (SiQAC) with tetraethoxysilane (TEOS). Methods: The study sample included 81 Candida species of which 9 were type strains and 72 were clinical isolates. Minimum inhibitory concentrations, synergy, fractional inhibitory concentration index (FICI), and time kill assays were determined by broth microdilution. Electron microscopy (EM) was used to determine the qualitative changes brought about after treatment with K21. Results: K21 inhibited the growth of all fluconazole-resistant and susceptible Candida strains with only 2 h of exposure required to effectively kill 99.9% of the inoculum, and a definite synergistic effect was observed with a combination of K21 and fluconazole. EM demonstrated the presence of two forms of extracellular vesicles indicative of biofilm formation and cell lysis. Conclusion: The study established the efficacy of K21 as an antifungal agent and with fluconazole-resistant candidiasis on the increase, the development of K21 can provide a promising alternative to combat acquired drug resistance.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...