Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Small ; 20(30): e2310782, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38431927

RESUMEN

Freestanding oxide membranes provide a promising path for integrating devices on silicon and flexible platforms. To ensure optimal device performance, these membranes must be of high crystal quality, stoichiometric, and their morphology free from cracks and wrinkles. Often, layers transferred on substrates show wrinkles and cracks due to a lattice relaxation from an epitaxial mismatch. Doping the sacrificial layer of Sr3Al2O6 (SAO) with Ca or Ba offers a promising solution to overcome these challenges, yet its effects remain critically underexplored. A systematic study of doping Ca into SAO is presented, optimizing the pulsed laser deposition (PLD) conditions, and adjusting the supporting polymer type and thickness, demonstrating that strain engineering can effectively eliminate these imperfections. Using SrTiO3 as a case study, it is found that Ca1.5Sr1.5Al2O6 offers a near-perfect match and a defect-free freestanding membrane. This approach, using the water-soluble Bax/CaxSr3-xAl2O6 family, paves the way for producing high-quality, large freestanding membranes for functional oxide devices.

2.
Mater Adv ; 4(24): 6638-6644, 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-38088950

RESUMEN

Ionic conductivity is pivotal for solid-state battery performance. While the garnet oxide electrolyte Li7La3Zr2O12 (LLZO) boasts high ionic conductivity due to its distinct crystal structure and lithium-ion mobility, lithium loss during fabrication hampers its potential. In this study, we introduce a method that merges synthesis optimization with a post-lithiation process, enhancing LLZO's ionic conductivity. This approach compensates lithium loss with a gas-phase diffusion process, which stabilizes the cubic LLZO phase and amplifies its ionic conductivity by more than three orders of magnitude compared to electrolytes without post-lithiation. Through our comprehensive experimental procedure, we have conclusively determined that the film deposited at 700 °C and subsequently annealed at 700 °C with LiOH exhibits the highest conductivity, with a notable value of 1.11 × 10-2 S cm-1 at 200 °C. This is a significant boost compared to the as-deposited film (3.54 × 10-6 S cm-1 at 200 °C). Our findings present an additional approach to boosting lithium ion diffusion. The approach employed in this work has the potential to be applicable to films produced through other deposition methods, as it addresses the prevalent issue of lithium loss, a significant barrier to the utilization of lithium-rich thin films.

3.
Adv Mater ; 35(32): e2300200, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37154173

RESUMEN

Complex oxide heterointerfaces contain a rich playground of novel physical properties and functionalities, which give rise to emerging technologies. Among designing and controlling the functional properties of complex oxide film heterostructures, vertically aligned nanostructure (VAN) films using a self-assembling bottom-up deposition method presents great promise in terms of structural flexibility and property tunability. Here, the bottom-up self-assembly is extended to a new approach using a mixture containing a 2Dlayer-by-layer film growth, followed by a 3D VAN film growth. In this work, the two-phase nanocomposite thin films are based on LaAlO3 :LaBO3 , grown on a lattice-mismatched SrTiO3001 (001) single crystal. The 2D-to-3D transient structural assembly is primarily controlled by the composition ratio, leading to the coexistence of multiple interfacial properties, 2D electron gas, and magnetic anisotropy. This approach provides multidimensional film heterostructures which enrich the emergent phenomena for multifunctional applications.

4.
Nature ; 609(7928): 695-700, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36131038

RESUMEN

Electrostriction is a property of dielectric materials whereby an applied electric field induces a mechanical deformation proportional to the square of that field. The magnitude of the effect is usually minuscule (<10-19 m2 V-2 for simple oxides). However, symmetry-breaking phenomena at the interfaces can offer an efficient strategy for the design of new properties1,2. Here we report an engineered electrostrictive effect via the epitaxial deposition of alternating layers of Gd2O3-doped CeO2 and Er2O3-stabilized δ-Bi2O3 with atomically controlled interfaces on NdGaO3 substrates. The value of the electrostriction coefficient achieved is 2.38 × 10-14 m2 V-2, exceeding the best known relaxor ferroelectrics by three orders of magnitude. Our theoretical calculations indicate that this greatly enhanced electrostriction arises from coherent strain imparted by interfacial lattice discontinuity. These artificial heterostructures open a new avenue for the design and manipulation of electrostrictive materials and devices for nano/micro actuation and cutting-edge sensors.


Asunto(s)
Óxidos , Óxidos/química
5.
Adv Mater ; 34(38): e2203187, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35901262

RESUMEN

The integration of dissimilar materials in heterostructures has long been a cornerstone of modern materials science-seminal examples are 2D materials and van der Waals heterostructures. Recently, new methods have been developed that enable the realization of ultrathin freestanding oxide films approaching the 2D limit. Oxides offer new degrees of freedom, due to the strong electronic interactions, especially the 3d orbital electrons, which give rise to rich exotic phases. Inspired by this progress, a new platform for assembling freestanding oxide thin films with different materials and orientations into artificial stacks with heterointerfaces is developed. It is shown that the oxide stacks can be tailored by controlling the stacking sequences, as well as the twist angle between the constituent layers with atomically sharp interfaces, leading to distinct moiré patterns in the transmission electron microscopy images of the full stacks. Stacking and twisting is recognized as a key degree of structural freedom in 2D materials but, until now, has never been realized for oxide materials. This approach opens unexplored avenues for fabricating artificial 3D oxide stacking heterostructures with freestanding membranes across a broad range of complex oxide crystal structures with functionalities not available in conventional 2D materials.

6.
Nano Lett ; 22(12): 4758-4764, 2022 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-35679577

RESUMEN

Freestanding oxide membranes constitute an intriguing material platform for new functionalities and allow integration of oxide electronics with technologically important platforms such as silicon. Sambri et al. recently reported a method to fabricate freestanding LaAlO3/SrTiO3 (LAO/STO) membranes by spalling of strained heterostructures. Here, we first develop a scheme for the high-yield fabrication of membrane devices on silicon. Second, we show that the membranes exhibit metallic conductivity and a superconducting phase below ∼200 mK. Using anisotropic magnetotransport we extract the superconducting phase coherence length ξ ≈ 36-80 nm and establish an upper bound on the thickness of the superconducting electron gas d ≈ 17-33 nm, thus confirming its two-dimensional character. Finally, we show that the critical current can be modulated using a silicon-based backgate. The ability to form superconducting nanostructures of LAO/STO membranes, with electronic properties similar to those of the bulk counterpart, opens opportunities for integrating oxide nanoelectronics with silicon-based architectures.

7.
ACS Nano ; 16(4): 6437-6443, 2022 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-35312282

RESUMEN

The electronic structure as well as the mechanism underlying the high-mobility two-dimensional electron gases (2DEGs) at complex oxide interfaces remain elusive. Herein, using soft X-ray angle-resolved photoemission spectroscopy (ARPES), we present the band dispersion of metallic states at buffered LaAlO3/SrTiO3 (LAO/STO) heterointerfaces where a single-unit-cell LaMnO3 (LMO) spacer not only enhances the electron mobility but also renders the electronic structure robust toward X-ray radiation. By tracing the evolution of band dispersion, orbital occupation, and electron-phonon interaction of the interfacial 2DEG, we find unambiguous evidence that the insertion of the LMO buffer strongly suppresses both the formation of oxygen vacancies as well as the electron-phonon interaction on the STO side. The latter effect makes the buffered sample different from any other STO-based interfaces and may explain the maximum mobility enhancement achieved at buffered oxide interfaces.

8.
ACS Omega ; 7(8): 6579-6590, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-35252654

RESUMEN

Layered structured Ca3Co4O9 has displayed great potential for thermoelectric (TE) renewable energy applications, as it is nontoxic and contains abundantly available constituent elements. In this work, we study the crystal structure and high-temperature TE properties of Ca3-2y Na2y Co4-y Mo y O9 (0 ≤ y ≤ 0.10) polycrystalline materials. Powder X-ray diffraction (XRD) analysis shows that all samples are single-phase samples and without any noticeable amount of the secondary phase. X-ray photoelectron spectroscopic (XPS) measurements depict the presence of a mixture of Co3+ and Co4+ valence states in these materials. The Seebeck coefficient (S) of dual-doped materials is significantly enhanced, and electrical resistivities (ρ) and thermal conductivities (κ) are decreased compared to the pristine compound. The maximum thermoelectric power factor (PF = S 2/ρ) and dimensionless figure of merit (zT) obtained for the y = 0.025 sample at 1000 K temperature are ∼3.2 × 10-4 W m-1 K-2 and 0.27, respectively. The zT value for Ca2.95Na0.05Co3.975Mo0.025O9 is about 2.5 times higher than that of the parent Ca3Co4O9 compound. These results demonstrate that dual doping of Na and Mo cations is a promising strategy for improving the high-temperature thermoelectric properties of Ca3Co4O9.

9.
Phys Chem Chem Phys ; 24(6): 3741-3748, 2022 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-35080541

RESUMEN

The exploration for thermoelectric thin films of complex oxides such as SrTiO3-based oxides is driven by the need for miniaturized harvesting devices for powering the Internet of Things (IoT). However, there is still not a clear consensus in the literature for the underlying influence of film thickness on thermoelectric properties. Here, we report the fabrication of epitaxial thin films of 6% Nb-doped SrTiO3 on (001) (LaAlO3)0.3(Sr2AlTaO6)0.7 (LSAT) single crystal using pulsed laser deposition (PLD) where the film thickness was varied from 2 nm to 68 nm. The thickness dependence shows a subtle increase of tetragonality of the thin film lattice and a gradual drop of the electrical conductivity, the density of charge carriers, and the thermoelectric Seebeck coefficient as the film thickness decreases. DFT-based calculations show that ∼2.8% increase in tetragonality results in an increased splitting between t2g and eg orbitals to ∼42.3 meV. However, experimentally observed tetragonality for films between 68 to 13 nm is only 0.06%. Hence, the effect of thickness on tetragonality is neglected. We have discussed the decrease of conductivity and the Seebeck coefficient based on the decrease of carriers and change in the scattering mechanism, respectively.

10.
Inorg Chem ; 60(23): 17824-17836, 2021 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-34743519

RESUMEN

A new series of Ba2-xBixCoRuO6 (0.0 ≤ x ≤ 0.6) hexagonal double perovskite oxides have been synthesized by a solid-state reaction method by substituting Ba with Bi. The polycrystalline materials are structurally characterized by the laboratory X-ray diffraction, synchrotron X-ray, and neutron powder diffraction. The lattice parameters are found to increase with increasing Bi doping despite the smaller ionic radius of Bi3+ compared to Ba2+. The expansion is attributed to the reduction of Co/Ru-site cations. Scanning electron microscopy further shows that the grain size increases with the Bi content. All Ba2-xBixCoRuO6 (0.0 ≤ x ≤ 0.6) samples exhibit p-type behavior, and the electrical resistivity (ρ) is consistent with a small polaron hopping model. The Seebeck coefficient (S) and thermal conductivity (κ) are improved significantly with Bi doping. High values of the power factor (PF ∼ 6.64 × 10-4 W/m·K2) and figure of merit (zT ∼ 0.23) are obtained at 618 K for the x = 0.6 sample. These results show that Bi doping is an effective approach for enhancing the thermoelectric properties of hexagonal Ba2-xBixCoRuO6 perovskite oxides.

11.
ACS Nano ; 15(3): 4347-4356, 2021 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-33661601

RESUMEN

The rich functionalities of transition-metal oxides and their interfaces bear an enormous technological potential. Its realization in practical devices requires, however, a significant improvement of yet relatively low electron mobility in oxide materials. Recently, a mobility boost of about 2 orders of magnitude has been demonstrated at the spinel-perovskite γ-Al2O3/SrTiO3 interface compared to the paradigm perovskite-perovskite LaAlO3/SrTiO3 interface. We explore the fundamental physics behind this phenomenon from direct measurements of the momentum-resolved electronic structure of this interface using resonant soft-X-ray angle-resolved photoemission. We find an anomaly in orbital ordering of the mobile electrons in γ-Al2O3/SrTiO3 which depopulates electron states in the top SrTiO3 layer. This rearrangement of the mobile electron system pushes the electron density away from the interface, which reduces its overlap with the interfacial defects and weakens the electron-phonon interaction, both effects contributing to the mobility boost. A crystal-field analysis shows that the band order alters owing to the symmetry breaking between the spinel γ-Al2O3 and perovskite SrTiO3. Band-order engineering, exploiting the fundamental symmetry properties, emerges as another route to boost the performance of oxide devices.

12.
ACS Omega ; 6(1): 197-205, 2021 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-33458472

RESUMEN

The present challenge with all-oxide thermoelectric modules is their poor durability at high temperatures caused by the instability of the metal-oxide interfaces at the hot side. This work explains a new module concept based on a hybrid p-n junction, fabricated in one step by spark plasma co-sintering of Ca3Co4-x O9+δ (CCO, p-type) and CaMnO3-δ/CaMn2O4 (CMO, n-type). Different module (unicouple) designs were studied to obtain a thorough understanding of the role of the in situ formed hybrid p-n junction of Ca3CoMnO6 (CCMO, p-type) and Co-oxide rich phases (p-type) at the p-n junction (>700 °C) in the module performance. A time-enhanced performance of the modules attributed to this p-n junction formation was observed due to the unique electrical properties of the hybrid p-n junction being sufficiently conductive at high temperatures (>700 °C) and nonconductive at moderate and low temperatures. The alteration of module design resulted in a variation of the power density from 12.4 (3.1) to 28.9 mW/cm2 (7.2 mW) at ΔT ∼ 650 °C after 2 days of isothermal hold (900 °C hot side). This new concept provides a facile method for the fabrication of easily processable, cheap, and high-performance high-temperature modules.

13.
Phys Chem Chem Phys ; 22(38): 21900-21908, 2020 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-32969460

RESUMEN

Cerium oxide (ceria, CeO2) is one of the most promising mixed ionic and electronic conducting materials. Previous atomistic analysis has widely covered the effects of substitution on oxygen vacancy migration. However, an in-depth analysis of the role of cation substitution beyond trivalent cations has rarely been explored. Here, we investigate soluble monovalent (Li+, Na+, K+, Rb+), divalent (Fe2+, Co2+, Mn2+, Mg2+, Ni2+, Zn2+, Cd2+, Ca2+, Sr2+, Ba2+), trivalent (Al3+, Fe3+, Sc3+, In3+, Lu3+, Yb3+, Y3+, Er3+, Gd3+, Eu3+, Nd3+, Pr3+, La3+) and tetravalent (Si4+, Ge4+, Ti4+, Sn4+, Hf4+, Zr4+) cation substituents. By combining classical simulations and quantum mechanical calculations, we provide an insight into defect association energies between substituent cations and oxygen vacancies as well as their effects on the diffusion mechanisms. Our simulations indicate that oxygen ionic diffusivity of subvalent cation-substituted systems follows the order Gd3+ > Ca2+ > Na+. With the same charge, a larger size mismatch with the Ce4+ cation yields a lower oxygen ionic diffusivity, i.e., Na+ > K+, Ca2+ > Ni2+, Gd3+ > Al3+. Based on these trends, we identify species that could tune the oxygen ionic diffusivity: we estimate that the optimum oxygen vacancy concentration for achieving fast oxygen ionic transport is ≈2.5% for GdxCe1-xO2-x/2, CaxCe1-xO2-x and NaxCe1-xO2-3x/2 at 800 K. Remarkably, such a concentration is not constant and shifts gradually to higher values as the temperature is increased. We find that co-substitutions can enhance the impact of the single substitutions beyond that expected by their simple addition. Furthermore, we identify preferential oxygen ion migration pathways, which illustrate the electro-steric effects of substituent cations in determining the energy barrier of oxygen ion migration. Such fundamental insights into the factors that govern the oxygen diffusion coefficient and migration energy would enable design criteria to be defined for tuning the ionic properties of the material, e.g., by co-substitutions.

14.
Phys Chem Chem Phys ; 22(15): 7769-7777, 2020 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-32236207

RESUMEN

Plasmon-enhanced harvesting of photons has contributed to the photochemical conversion and storage of solar energy. However, high dependence on noble metals and weak coupling in heterostructures constrain the progress towards sustainable plasmonic enhancement. Here earth-abundant Ti is studied to achieve the plasmonic enhancement of catalytic activity in a solar-driven heterostructure Ti/TiO2-x. The heterostructure was fabricated by engineering an intense coupling of a surface-etched Ti metal and a gradient-based TiO2-x dielectric via diffusion doping. Ti/TiO2-x exhibits a highly resonant light absorption band associated with surface plasmon resonances that exhibit strong near-field enhancement (NFE) and hot electron injection effects. In a photoelectrochemical system, intense interaction of the resonant plasmons with a vicinal TiO2-x dielectric accelerates the transfer of solar energy to charge carriers for plasmon-enhanced water splitting reactions. Moreover, the plasmonic Ti/TiO2-x structure presents sustained enhanced redox activities over 100 h. The intense coupling by gradient doping offers an effective approach to enable the plasmon resonances of Ti excited by visible light. The Ti-based plasmonic heterostructure potentially opens an alternative avenue towards sustainable plasmon-enhanced catalysis.

15.
Sci Rep ; 9(1): 18005, 2019 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-31784583

RESUMEN

Heterostructures and crystal interfaces play a major role in state-of-the-art semiconductor devices and play a central role in the field of oxide electronics. In oxides the link between the microscopic properties of the interfaces and bulk properties of the resulting heterostructures challenge our fundamental understanding. Insights on the early growth stage of interfaces and its influence on resulting physical properties are scarce - typically the information is inferred from post growth characterization. Here, we report on real time measurements of the transport properties of SrTiO3-based heterostructures at room temperature, while the heterostructure is forming. Surprisingly, we detect a conducting interface already at the initial growth stage, much earlier than the well-established critical thickness limit for observing conductivity ex-situ after sample growth. We investigate how the conductivity depends on various physical processes occurring during pulsed laser depositions, including light illumination, particle bombardment by the plasma plume, interactions with the atmosphere and oxygen migration from SrTiO3 to the thin films of varying compositions. We conclude that the conductivity in these room-temperature grown interfaces stem from oxygen vacancies with a concentration determined primarily by a balance between vacancy formation through particle bombardment and interfacial redox reaction and vacancy annihilation through oxidation. Using this approach, we propose a new design tool to control the electrical properties of interfaces in real time during their formation.

16.
Adv Mater ; 31(44): e1904733, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31532884

RESUMEN

Symmetry-imposed restrictions on the number of available pyroelectric and piezoelectric materials remain a major limitation as 22 out of 32 crystallographic material classes exhibit neither pyroelectricity nor piezoelectricity. Yet, by breaking the lattice symmetry it is possible to circumvent this limitation. Here, using a unique technique for measuring transient currents upon rapid heating, direct experimental evidence is provided that despite the fact that bulk SrTiO3 is not pyroelectric, the (100) surface of TiO2 -terminated SrTiO3 is intrinsically pyroelectric at room temperature. The pyroelectric layer is found to be ≈1 nm thick and, surprisingly, its polarization is comparable with that of strongly polar materials such as BaTiO3 . The pyroelectric effect can be tuned ON/OFF by the formation or removal of a nanometric SiO2 layer. Using density functional theory, the pyroelectricity is found to be a result of polar surface relaxation, which can be suppressed by varying the lattice symmetry breaking using a SiO2 capping layer. The observation of pyroelectricity emerging at the SrTiO3 surface also implies that it is intrinsically piezoelectric. These findings may pave the way for observing and tailoring piezo- and pyroelectricity in any material through appropriate breaking of symmetry at surfaces and artificial nanostructures such as heterointerfaces and superlattices.

17.
Nanoscale ; 11(6): 2916-2924, 2019 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-30688947

RESUMEN

A modulated coherent (La,Sr)CoO3-δ/(Ce,Gd)O2-δ heterostructure is characterized for the first time for its electronic and chemical properties. 2D-multilayer architectures are deposited on NdGaO3 (110) single crystal substrate by pulsed laser deposition, resulting in epitaxial structures with in-plane lattice rotation that, via the metal oxides' interfaces, induces mutual structural rearrangements. Our results show that (La,Sr)CoO3-d thin films of 10-100 nm are chemically unstable when exposed to air at 600 °C during electrical cyclic stress-tests. Conversely, improved stability is achieved confining LSC in the nanometric heterostructure. Remarkably, the chemical stabilization occurs without compromising substantially the electrical properties of the LSC component: the heterostructures show unexpected electrical behaviour with dominant electronic contributions, fast conductivity and mixed ionic-electronic properties, depending on the number of interfaces and the nano-scaled layers.

18.
Adv Mater ; 31(10): e1805970, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30637817

RESUMEN

The metallic interface between two oxide insulators, such as LaAlO3 /SrTiO3 (LAO/STO), provides new opportunities for electronics and spintronics. However, due to the presence of multiple orbital populations, tailoring the interfacial properties such as the ground state and metal-insulator transitions remains challenging. Here, an unforeseen tunability of the phase diagram of LAO/STO is reported by alloying LAO with a ferromagnetic LaMnO3 insulator without forming lattice disorder and at the same time without changing the polarity of the system. By increasing the Mn-doping level, x, of LaAl1- x Mnx O3 /STO (0 ≤ x ≤ 1), the interface undergoes a Lifshitz transition at x = 0.225 across a critical carrier density of nc = 2.8 × 1013 cm-2 , where a peak TSC ≈255 mK of superconducting transition temperature is observed. Moreover, the LaAl1- x Mnx O3 turns ferromagnetic at x ≥ 0.25. Remarkably, at x = 0.3, where the metallic interface is populated by only dxy electrons and just before it becomes insulating, a same device with both signatures of superconductivity and clear anomalous Hall effect (7.6 × 1012 cm-2 < ns ≤ 1.1 × 1013 cm-2 ) is achieved reproducibly. This provides a unique and effective way to tailor oxide interfaces for designing on-demand electronic and spintronic devices.

19.
RSC Adv ; 9(54): 31274-31283, 2019 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-35527926

RESUMEN

We report the electrical, magnetic and magnetotransport properties of Na and Mo dual doped Ca3-2x Na2x Co4-x Mo x O9 (0 ≤ x ≤ 0.15) polycrystalline samples. The results indicate that the strength of ferrimagnetic interaction decreases with increase in doping, as is evident from the observed decrease in Curie temperatures (T C). The substitution of non-magnetic Mo6+ ions (4d0) in CoO2 layers and the presence of oxygen vacancies are responsible for decrease in ligand field strength, which results in an enhanced magnetization in the low doped x = 0.025 sample due to a change from the low spin to partial high spin electron configuration. The electrical resistivity of samples exhibits a semiconducting-like behavior in the low temperature range, a strongly correlated Fermi liquid-like behavior in the intermediate temperature range, and an incoherent metal-like behavior in the temperature range 210-300 K. All the samples show a large negative magnetoresistance (MR) at low temperature with a maximum MR value of -59% for the x = 0.025 sample at 2 K and 16 T applied field. The MR values follow the observed trend in magnetization at 5 K and sharply increase below the Curie temperatures of the samples, suggesting that the ferrimagnetic interactions are mainly responsible for the decrease in electrical resistivity under an applied magnetic field.

20.
Phys Chem Chem Phys ; 20(41): 26068-26071, 2018 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-30307015

RESUMEN

The cubic phase of pure zirconia (ZrO2) is stabilized in dense thin films through a controlled introduction of oxygen vacancies (O defects) by cold-plasma-based sputtering deposition. Here, we show that the cubic crystals present at the film/substrate interface near-region exhibit fast ionic transport, which is superior to what is obtained with similar yttrium-stabilized cubic zirconia thin films.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA