Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Cell Sci ; 137(5)2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-37888135

RESUMEN

Polarised epithelial cell divisions represent a fundamental mechanism for tissue maintenance and morphogenesis. Morphological and mechanical changes in the plasma membrane influence the organisation and crosstalk of microtubules and actin at the cell cortex, thereby regulating the mitotic spindle machinery and chromosome segregation. Yet, the precise mechanisms linking plasma membrane remodelling to cell polarity and cortical cytoskeleton dynamics to ensure accurate execution of mitosis in mammalian epithelial cells remain poorly understood. Here, we manipulated the density of mammary epithelial cells in culture, which led to several mitotic defects. Perturbation of cell-cell adhesion formation impairs the dynamics of the plasma membrane, affecting the shape and size of mitotic cells and resulting in defects in mitotic progression and the generation of daughter cells with aberrant architecture. In these conditions, F- actin-astral microtubule crosstalk is impaired, leading to mitotic spindle misassembly and misorientation, which in turn contributes to chromosome mis-segregation. Mechanistically, we identify S100 Ca2+-binding protein A11 (S100A11) as a key membrane-associated regulator that forms a complex with E-cadherin (CDH1) and the leucine-glycine-asparagine repeat protein LGN (also known as GPSM2) to coordinate plasma membrane remodelling with E-cadherin-mediated cell adhesion and LGN-dependent mitotic spindle machinery. Thus, plasma membrane-mediated maintenance of mammalian epithelial cell identity is crucial for correct execution of polarised cell divisions, genome maintenance and safeguarding tissue integrity.


Asunto(s)
Actinas , Polaridad Celular , Animales , Adhesión Celular , Actinas/metabolismo , Polaridad Celular/fisiología , Mitosis , Microtúbulos/metabolismo , Huso Acromático/metabolismo , Membrana Celular/metabolismo , Cadherinas/genética , Cadherinas/metabolismo , Mamíferos/metabolismo
2.
Mol Biol Cell ; 33(1): ar1, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34705493

RESUMEN

KNL1 is a large intrinsically disordered kinetochore (KT) protein that recruits spindle assembly checkpoint (SAC) components to mediate SAC signaling. The N-terminal region (NTR) of KNL1 possesses two activities that have been implicated in SAC silencing: microtubule (MT) binding and protein phosphatase 1 (PP1) recruitment. The NTR of Drosophila melanogaster KNL1 (Spc105) has never been shown to bind MTs or to recruit PP1. Furthermore, the phosphoregulatory mechanisms known to control SAC protein binding to KNL1 orthologues is absent in D. melanogaster. Here, these apparent discrepancies are resolved using in vitro and cell-based assays. A phosphoregulatory circuit that utilizes Aurora B kinase promotes SAC protein binding to the central disordered region of Spc105 while the NTR binds directly to MTs in vitro and recruits PP1-87B to KTs in vivo. Live-cell assays employing an optogenetic oligomerization tag and deletion/chimera mutants are used to define the interplay of MT and PP1 binding by Spc105 and the relative contributions of both activities to the kinetics of SAC satisfaction.


Asunto(s)
Proteínas de Drosophila/metabolismo , Puntos de Control de la Fase M del Ciclo Celular/fisiología , Animales , Aurora Quinasa B/metabolismo , Puntos de Control del Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Segregación Cromosómica , Proteínas de Drosophila/fisiología , Drosophila melanogaster/metabolismo , Cinética , Cinetocoros/metabolismo , Puntos de Control de la Fase M del Ciclo Celular/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Unión Proteica/genética , Proteína Fosfatasa 1/metabolismo , Receptores de Neuropéptido Y/metabolismo , Huso Acromático/metabolismo
4.
Cell Death Dis ; 11(11): 1001, 2020 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-33221821

RESUMEN

Triple-negative breast cancer (TNBC) is the most aggressive type of breast cancer that lacks the oestrogen receptor, progesterone receptor and human epidermal growth factor receptor 2, making it difficult to target therapeutically. Targeting synthetic lethality is an alternative approach for cancer treatment. TNBC shows frequent loss of phosphatase and tensin homologue (PTEN) expression, which is associated with poor prognosis and treatment response. To identify PTEN synthetic lethal interactions, TCGA analysis coupled with a whole-genome siRNA screen in isogenic PTEN-negative and -positive cells were performed. Among the candidate genes essential for the survival of PTEN-inactive TNBC cells, WDHD1 (WD repeat and high-mobility group box DNA-binding protein 1) expression was increased in the low vs. high PTEN TNBC samples. It was also the top hit in the siRNA screen and its knockdown significantly inhibited cell viability in PTEN-negative cells, which was further validated in 2D and 3D cultures. Mechanistically, WDHD1 is important to mediate a high demand of protein translation in PTEN-inactive TNBC. Finally, the importance of WDHD1 in TNBC was confirmed in patient samples obtained from the TCGA and tissue microarrays with clinic-pathological information. Taken together, as an essential gene for the survival of PTEN-inactive TNBC cells, WDHD1 could be a potential biomarker or a therapeutic target for TNBC.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Fosfohidrolasa PTEN/metabolismo , Neoplasias de la Mama Triple Negativas/metabolismo , Línea Celular Tumoral , Femenino , Humanos , Persona de Mediana Edad , Fosfohidrolasa PTEN/biosíntesis , Fosfohidrolasa PTEN/genética , Transducción de Señal , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/patología
5.
Commun Biol ; 3(1): 454, 2020 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-32814801

RESUMEN

Barrier-to-Autointegration Factor (BAF) is a conserved nuclear envelope (NE) component that binds chromatin and helps its anchoring to the NE. Cycles of phosphorylation and dephosphorylation control BAF function. Entering mitosis, phosphorylation releases BAF from chromatin and facilitates NE-disassembly. At mitotic exit, PP2A-mediated dephosphorylation restores chromatin binding and nucleates NE-reassembly. Here, we show that in Drosophila a small fraction of BAF (cenBAF) associates with centromeres. We also find that PP4 phosphatase, which is recruited to centromeres by CENP-C, prevents phosphorylation and release of cenBAF during mitosis. cenBAF is necessary for proper centromere assembly and accurate chromosome segregation, being critical for mitosis progression. Disrupting cenBAF localization prevents PP2A inactivation in mitosis compromising global BAF phosphorylation, which in turn leads to its persistent association with chromatin, delays anaphase onset and causes NE defects. These results suggest that, together with PP4 and CENP-C, cenBAF forms a centromere-based mechanism that controls chromosome segregation and mitosis progression.


Asunto(s)
Centrómero/genética , Centrómero/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Mitosis , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Animales , Biomarcadores , Cromatina/genética , Cromatina/metabolismo , Técnica del Anticuerpo Fluorescente , Regulación de la Expresión Génica , Modelos Biológicos , Fosforilación , Unión Proteica , Transporte de Proteínas
6.
Open Biol ; 6(2): 150238, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26911623

RESUMEN

The kinetochore provides a physical connection between microtubules and the centromeric regions of chromosomes that is critical for their equitable segregation. The trimeric Mis12 sub-complex of the Drosophila kinetochore binds to the mitotic centromere using CENP-C as a platform. However, knowledge of the precise connections between Mis12 complex components and CENP-C has remained elusive despite the fundamental importance of this part of the cell division machinery. Here, we employ hydrogen-deuterium exchange coupled with mass spectrometry to reveal that Mis12 and Nnf1 form a dimer maintained by interacting coiled-coil (CC) domains within the carboxy-terminal parts of both proteins. Adjacent to these interacting CCs is a carboxy-terminal domain that also interacts with Nsl1. The amino-terminal parts of Mis12 and Nnf1 form a CENP-C-binding surface, which docks the complex and thus the entire kinetochore to mitotic centromeres. Mutational analysis confirms these precise interactions are critical for both structure and function of the complex. Thus, we conclude the organization of the Mis12-Nnf1 dimer confers upon the Mis12 complex a bipolar, elongated structure that is critical for kinetochore function.


Asunto(s)
Drosophila/metabolismo , Cinetocoros/metabolismo , Mapas de Interacción de Proteínas , Secuencia de Aminoácidos , Animales , Centrómero/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Drosophila/metabolismo , Cinetocoros/química , Microtúbulos/química , Microtúbulos/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Proteínas Nucleares , Unión Proteica , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Mapeo de Interacción de Proteínas , Multimerización de Proteína , Alineación de Secuencia , Factores de Transcripción/metabolismo , Proteínas de Transporte Vesicular
7.
BioData Min ; 8: 30, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26405458

RESUMEN

BACKGROUND: The identification of interaction networks between proteins and complexes holds the promise of offering novel insights into the molecular mechanisms that regulate many biological processes. With increasing volumes of such datasets, especially in model organisms such as Drosophila melanogaster, there exists a pressing need for specialised tools, which can seamlessly collect, integrate and analyse these data. Here we describe a database coupled with a mining tool for protein-protein interactions (DAPPER), developed as a rich resource for studying multi-protein complexes in Drosophila melanogaster. RESULTS: This proteomics database is compiled through mass spectrometric analyses of many protein complexes affinity purified from Drosophila tissues and cultured cells. The web access to DAPPER is provided via an accelerated version of BioMart software enabling data-mining through customised querying and output formats. The protein-protein interaction dataset is annotated with FlyBase identifiers, and further linked to the Ensembl database using BioMart's data-federation model, thereby enabling complex multi-dataset queries. DAPPER is open source, with all its contents and source code are freely available. CONCLUSIONS: DAPPER offers an easy-to-navigate and extensible platform for real-time integration of diverse resources containing new and existing protein-protein interaction datasets of Drosophila melanogaster.

8.
Dev Cell ; 34(1): 73-84, 2015 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-26151904

RESUMEN

Centromeres are essential chromosomal structures that mediate accurate chromosome segregation during cell division. Centromeres are specified epigenetically by the heritable incorporation of the centromeric histone H3 variant CENP-A. While many of the primary factors that mediate centromeric deposition of CENP-A are known, the chromatin and DNA requirements of this process have remained elusive. Here, we uncover a role for transcription in Drosophila CENP-A deposition. Using an inducible ectopic centromere system that uncouples CENP-A deposition from endogenous centromere function and cell-cycle progression, we demonstrate that CENP-A assembly by its loading factor, CAL1, requires RNAPII-mediated transcription of the underlying DNA. This transcription depends on the CAL1 binding partner FACT, but not on CENP-A incorporation. Our work establishes RNAPII passage as a key step in chaperone-mediated CENP-A chromatin establishment and propagation.


Asunto(s)
Proteínas Portadoras/metabolismo , Centrómero/metabolismo , Cromatina/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Histonas/metabolismo , Animales , Proteína A Centromérica , Ensamble y Desensamble de Cromatina/fisiología , Mitosis/fisiología
9.
J Mol Biol ; 427(10): 1949-63, 2015 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-25813344

RESUMEN

Nucleoplasmin is a histone chaperone that consists of a pentameric N-terminal domain and an unstructured C-terminal tail. The pentameric core domain, a doughnut-like structure with a central pore, is only found in the nucleoplasmin family. Here, we report the first structure of a nucleoplasmin-like domain (NPL) from the unrelated Drosophila protein, FKBP39, and we present evidence that this protein associates with chromatin. Furthermore, we show that two other chromatin proteins, Arabidopsis thaliana histone deacetylase type 2 (HD2) and Saccharomyces cerevisiae Fpr4, share the NPL fold and form pentamers, or a dimer of pentamers in the case of HD2. Thus, we propose a new family of proteins that share the pentameric nucleoplasmin-like NPL domain and are found in protists, fungi, plants and animals.


Asunto(s)
Cromatina/metabolismo , Proteínas de Drosophila/química , Chaperonas de Histonas/química , Histona Desacetilasa 2/química , Histonas/metabolismo , Nucleoplasminas/química , Proteínas Recombinantes/química , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Unión a Tacrolimus/química , Secuencia de Aminoácidos , Animales , Arabidopsis/metabolismo , Reactivos de Enlaces Cruzados , Cristalografía por Rayos X , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Chaperonas de Histonas/metabolismo , Histona Desacetilasa 2/metabolismo , Inmunoprecipitación , Modelos Moleculares , Datos de Secuencia Molecular , Nucleoplasminas/metabolismo , Filogenia , Unión Proteica , Conformación Proteica , Estructura Terciaria de Proteína , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Homología de Secuencia de Aminoácido , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Relación Estructura-Actividad , Proteínas de Unión a Tacrolimus/metabolismo
10.
Nat Commun ; 6: 5894, 2015 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-25562660

RESUMEN

The cell division cycle requires tight coupling between protein phosphorylation and dephosphorylation. However, understanding the cell cycle roles of multimeric protein phosphatases has been limited by the lack of knowledge of how their diverse regulatory subunits target highly conserved catalytic subunits to their sites of action. Phosphoprotein phosphatase 4 (PP4) has been recently shown to participate in the regulation of cell cycle progression. We now find that the EVH1 domain of the regulatory subunit 3 of Drosophila PP4, Falafel (Flfl), directly interacts with the centromeric protein C (CENP-C). Unlike other EVH1 domains that interact with proline-rich ligands, the crystal structure of the Flfl amino-terminal EVH1 domain bound to a CENP-C peptide reveals a new target-recognition mode for the phosphatase subunit. We also show that binding of Flfl to CENP-C is required to bring PP4 activity to centromeres to maintain CENP-C and attached core kinetochore proteins at chromosomes during mitosis.


Asunto(s)
Ciclo Celular/fisiología , Centrómero/metabolismo , Drosophila melanogaster/genética , Fosfoproteínas Fosfatasas/química , Fosfoproteínas Fosfatasas/metabolismo , Animales , Animales Modificados Genéticamente , Células Cultivadas , Proteínas Cromosómicas no Histona/metabolismo , Cristalografía , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/fisiología , Ensayo de Cambio de Movilidad Electroforética , Procesamiento de Imagen Asistido por Computador , Espectrometría de Masas , Microscopía Confocal , Mutagénesis Sitio-Dirigida , Estructura Terciaria de Proteína , Interferencia de ARN
11.
J Biol Chem ; 289(32): 21844-55, 2014 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-24920672

RESUMEN

The nucleosome remodeling and deacetylase (NuRD) complex is a widely conserved transcriptional co-regulator that harbors both nucleosome remodeling and histone deacetylase activities. It plays a critical role in the early stages of ES cell differentiation and the reprogramming of somatic to induced pluripotent stem cells. Abnormalities in several NuRD proteins are associated with cancer and aging. We have investigated the architecture of NuRD by determining the structure of a subcomplex comprising RbAp48 and MTA1. Surprisingly, RbAp48 recognizes MTA1 using the same site that it uses to bind histone H4, showing that assembly into NuRD modulates RbAp46/48 interactions with histones. Taken together with other results, our data show that the MTA proteins act as scaffolds for NuRD complex assembly. We further show that the RbAp48-MTA1 interaction is essential for the in vivo integration of RbAp46/48 into the NuRD complex.


Asunto(s)
Histona Desacetilasas/química , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/química , Proteínas Represoras/química , Proteína 4 de Unión a Retinoblastoma/química , Secuencia de Aminoácidos , Animales , Ensamble y Desensamble de Cromatina , Secuencia Conservada , Cristalografía por Rayos X , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Histonas/metabolismo , Humanos , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/genética , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Proteínas Nucleares/química , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Nucleosomas/metabolismo , Dominios y Motivos de Interacción de Proteínas , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Proteína 4 de Unión a Retinoblastoma/genética , Proteína 4 de Unión a Retinoblastoma/metabolismo , Proteína 7 de Unión a Retinoblastoma/química , Proteína 7 de Unión a Retinoblastoma/genética , Proteína 7 de Unión a Retinoblastoma/metabolismo , Homología de Secuencia de Aminoácido , Transactivadores , Factores de Transcripción/química , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
12.
Methods Mol Biol ; 1170: 571-88, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24906338

RESUMEN

The ability to identify protein interactions is key to elucidating the molecular mechanisms of cellular processes, including mitosis and cell cycle regulation. Drosophila melanogaster, as a model system, provides powerful tools to study cell division using genetics, microscopy, and RNAi. Drosophila early embryos are highly enriched in mitotic protein complexes as their nuclei undergo 13 rounds of rapid, synchronous mitotic nuclear divisions in a syncytium during the first 2 h of development. Here, we describe simple methods for the affinity purification of protein complexes from transgenic fly embryos via protein A- and green fluorescent protein-tags fused to bait proteins of interest. This in vivo proteomics approach has allowed the identification of several known and novel mitotic protein interactions using mass spectrometry, and it expands the use of the Drosophila model in modern molecular biology.


Asunto(s)
Proteínas de Drosophila/aislamiento & purificación , Proteínas de Drosophila/metabolismo , Drosophila/embriología , Animales , Animales Modificados Genéticamente , Ciclo Celular , Cromatografía de Afinidad/métodos , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/aislamiento & purificación , Proteínas Fluorescentes Verdes/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/aislamiento & purificación , Proteínas Recombinantes de Fusión/metabolismo
13.
Open Biol ; 2(2): 110032, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22645658

RESUMEN

The formation of kinetochores shortly before each cell division is a prerequisite for proper chromosome segregation. The synchronous mitoses of Drosophila syncytial embryos have provided an ideal in vivo system to follow kinetochore assembly kinetics and so address the question of how kinetochore formation is regulated. We found that the nuclear exclusion of the Spc105/KNL1 protein during interphase prevents precocious assembly of the Mis12 complex. The nuclear import of Spc105 in early prophase and its immediate association with the Mis12 complex on centromeres are thus the first steps in kinetochore assembly. The cumulative kinetochore levels of Spc105 and Mis12 complex then determine the rate of Ndc80 complex recruitment commencing only after nuclear envelope breakdown. The carboxy-terminal part of Spc105 directs its nuclear import and is sufficient for the assembly of all core kinetochore components and CENP-C, when localized ectopically to centrosomes. Super-resolution microscopy shows that carboxy-terminus of Spc105 lies at the junction of the Mis12 and Ndc80 complexes on stretched kinetochores. Our study thus indicates that physical accessibility of kinetochore components plays a crucial role in the regulation of Drosophila kinetochore assembly and leads us to a model in which Spc105 is a licensing factor for its onset.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Cinetocoros/fisiología , Mitosis , Animales , Centrómero , Segregación Cromosómica , Drosophila/genética , Drosophila/crecimiento & desarrollo , Proteínas de Drosophila/genética , Embrión no Mamífero/citología , Embrión no Mamífero/metabolismo , Regulación del Desarrollo de la Expresión Génica
14.
Curr Biol ; 21(5): 399-405, 2011 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-21353555

RESUMEN

Centromeres provide a region of chromatin upon which kinetochores are assembled in mitosis. Centromeric protein C (CENP-C) is a core component of this centromeric chromatin that, when depleted, prevents the proper formation of both centromeres and kinetochores. CENP-C localizes to centromeres throughout the cell cycle via its C-terminal part, whereas its N-terminal part appears necessary for recruitment of some but not all components of the Mis12 complex of the kinetochore. We now find that all kinetochore proteins belonging to the KMN (KNL1/Spc105, the Mis12 complex, and the Ndc80 complex) network bind to the N-terminal part of Drosophila CENP-C. Moreover, we show that the Mis12 complex component Nnf1 interacts directly with CENP-C in vitro. To test whether CENP-C's N-terminal part was sufficient to recruit KMN proteins, we targeted it to the centrosome by fusing it to a domain of Plk4 kinase. The Mis12 and Ndc80 complexes and Spc105 protein were then all recruited to centrosomes at the expense of centromeres, leading to mitotic abnormalities typical of cells with defective kinetochores. Thus, the N-terminal part of Drosophila CENP-C is sufficient to recruit core kinetochore components and acts as the principal linkage between centromere and kinetochore during mitosis.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Drosophila/metabolismo , Cinetocoros/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Mitosis/fisiología , Complejos Multiproteicos/metabolismo , Animales , Western Blotting , Clonación Molecular , Cartilla de ADN/genética , Técnica del Anticuerpo Fluorescente , Procesamiento de Imagen Asistido por Computador , Espectrometría de Masas
15.
Genetics ; 187(1): 131-40, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20980244

RESUMEN

The kinetochore is a dynamic multiprotein complex assembled at the centromere in mitosis. Exactly how the structure of the kinetochore changes during mitosis and how its individual components contribute to chromosome segregation is largely unknown. Here we have focused on the contribution of the Mis12 complex to kinetochore assembly and function throughout mitosis in Drosophila. We show that despite the sequential kinetochore recruitment of Mis12 complex subunits Mis12 and Nsl1, the complex acts as a single functional unit. mis12 and nsl1 mutants show strikingly similar developmental and mitotic defects in which chromosomes are able to congress at metaphase, but their anaphase movement is strongly affected. While kinetochore association of Ndc80 absolutely depends on both Mis12 and Nsl1, BubR1 localization shows only partial dependency. In the presence of residual centromeric BubR1 the checkpoint still responds to microtubule depolymerization but is significantly weaker. These observations point to a complexity of the checkpoint response that may reflect subpopulations of BubR1 associated with residual kinetochore components, the core centromere, or elsewhere in the cell. Importantly our results indicate that core structural elements of the inner plate of the kinetochore have a greater contribution to faithful chromosome segregation in anaphase than in earlier stages of mitosis.


Asunto(s)
Anafase/genética , Cromosomas de Insectos/metabolismo , Drosophila melanogaster/citología , Drosophila melanogaster/metabolismo , Proteínas de Insectos/metabolismo , Cinetocoros/metabolismo , Movimiento , Animales , Proteínas de Ciclo Celular/metabolismo , Células Cultivadas , Segregación Cromosómica/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriología , Drosophila melanogaster/genética , Femenino , Genes de Insecto/genética , Proteínas de Insectos/genética , Masculino , Metafase/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Mutación
16.
J Cell Biol ; 191(7): 1351-65, 2010 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-21187330

RESUMEN

Cytokinesis, the final step of cell division, usually ends with the abscission of the two daughter cells. In some tissues, however, daughter cells never completely separate and remain interconnected by intercellular bridges or ring canals. In this paper, we report the identification and analysis of a novel ring canal component, Nessun Dorma (Nesd), isolated as an evolutionarily conserved partner of the centralspindlin complex, a key regulator of cytokinesis. Nesd contains a pectin lyase-like domain found in proteins that bind to polysaccharides, and we present evidence that it has high affinity for ß-galactosides in vitro. Moreover, nesd is an essential gene in Drosophila melanogaster, in which it is required for completion of cytokinesis during male meiosis and possibly in female germline cells. Our findings indicate that Nesd is a novel carbohydrate-binding protein that functions together with centralspindlin in late cytokinesis, thus highlighting the importance of glycosylation in this process.


Asunto(s)
Citocinesis/fisiología , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citología , Drosophila melanogaster/fisiología , Meiosis/fisiología , Proteínas Asociadas a Microtúbulos/genética , Espermatocitos/citología , Huso Acromático/metabolismo , Actinas/metabolismo , Secuencia de Aminoácidos , Animales , Línea Celular , Proteínas Contráctiles/metabolismo , Proteínas de Drosophila/genética , Femenino , Proteínas Activadoras de GTPasa/genética , Proteínas Activadoras de GTPasa/metabolismo , Galactósidos/metabolismo , Células Germinativas/citología , Células Germinativas/metabolismo , Humanos , Masculino , Proteínas Asociadas a Microtúbulos/metabolismo , Datos de Secuencia Molecular , Complejos Multiproteicos/metabolismo , Miosina Tipo II/genética , Miosina Tipo II/metabolismo , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Filogenia , Polisacáridos/metabolismo , Unión Proteica/fisiología , Dominios y Motivos de Interacción de Proteínas/fisiología , Espermatocitos/metabolismo , Telofase/fisiología
17.
Annu Rev Genet ; 43: 439-65, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19886809

RESUMEN

Accurate chromosome segregation is a prerequisite for the maintenance of the genomic stability. Consequently, elaborate molecular machineries and mechanisms emerged during the course of evolution in order to ensure proper division of the genetic material. The kinetochore, an essential multiprotein complex assembled on mitotic or meiotic centromeres, is an example of such machinery. Recently considerable progress has been made in understanding their composition, the recruitment hierarchy of their components, and the principles of their regulation. However, these advances are accompanied by a growing number of unanswered questions about the function of the individual subunits and of how the structure of the different subcomplexes relates to function. Here we review our rapidly growing knowledge on interacting networks of structural and regulatory proteins of the metazoan mitotic kinetochore: its centromeric foundations, its structural core, its components that interact with spindle microtubules and the spindle assembly checkpoint.


Asunto(s)
Centrómero/metabolismo , Cinetocoros/metabolismo , Animales , Segregación Cromosómica , Humanos , Microtúbulos/metabolismo
18.
Methods Mol Biol ; 545: 99-112, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19475384

RESUMEN

The identification of all the individual components that constitute the plethora of complexes in each cell type represents perhaps the most exciting challenge of postgenomic biology. This is particularly important in the study of events such as mitosis and cytokinesis, in which rapid and precise protein-protein interactions regulate both the direction and accuracy of these intricate processes. Here we describe an experimental strategy to isolate protein complexes involved in mitosis and cytokinesis in cultured Drosophila cells. This method involves the tagging of the bait protein with two IgG binding domains of Protein A and the isolation of the tagged bait along with its interacting partners by a single affinity purification step. These isolated complexes can then be analysed by several methods including mass spectrometry and Western blotting. Although this method has proven very successful in isolating mitotic and cytokinetic complexes, it can also be used to characterise protein complexes involved in many other cellular processes.


Asunto(s)
Proteínas de Ciclo Celular/aislamiento & purificación , Proteínas de Drosophila/aislamiento & purificación , Drosophila/química , Animales , Células Cultivadas , Drosophila/citología , Mitosis , Complejos Multiproteicos/aislamiento & purificación
19.
Cell Cycle ; 8(8): 1292-3, 2009 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-19270503

RESUMEN

The Mis12/MIND kinetochore complex is composed of 4 subunits of which the Dsn1 protein is a crucial component in all organisms where it has been identified. In Caenorhabditis elegans, depletion of Dsn1 results in a so-called "kinetochore null" phenotype, hence Dsn1's alternative name KNL3. In human, Dsn1 is required to shape an interface between the Mis12 complex and Blinkin, the counterpart of Spc105. In Drosophila however, despite many efforts using sequence comparisons and proteomics-based studies, a Dsn1 ortholog has not been found. Here we speculate that Drosophila Spc105R, a protein very much diverged from its counterparts in other species, might not only be playing the role of Spc105 itself but also of Dsn1.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Cinetocoros/metabolismo , Animales , Evolución Biológica , Caenorhabditis elegans/metabolismo , Humanos
20.
PLoS One ; 2(6): e572, 2007 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-17593971

RESUMEN

BACKGROUND: Polo-like kinases control multiple events during cell division, including mitotic entry, centrosome organization, spindle formation, chromosome segregation and cytokinesis. Their roles during cytokinesis, however, are not well understood because the requirement of these kinases during early stages of mitosis complicates the study of their functions after anaphase onset. METHODOLOGY/PRINCIPAL FINDINGS: We used time-lapse microscopy to analyze the dynamics of Polo::GFP in Drosophila tissue culture cells during mitosis. After anaphase onset, Polo::GFP concentrated at the spindle midzone, but also diffused along the entire length of the central spindle. Using RNA interference we demonstrate that the microtubule-associated proteins Feo and Klp3A are required for Polo recruitment to the spindle midzone, but not the kinesin Pavarotti as previously thought. Moreover, we show that Feo and Klp3A form a complex and that Polo co-localizes with both proteins during cytokinesis. CONCLUSION/SIGNIFICANCE: Our results reveal that the Feo/Klp3A complex is necessary for Polo recruitment to the spindle midzone. A similar finding has also been recently reported in mammalian cells [1], suggesting that this basic mechanism has been conserved during evolution, albeit with some differences. Finally, since cleavage furrow formation and ingression are unaffected following feo RNAi, our data imply that Polo recruitment to the central spindle is not required for furrowing, but some other aspect of cytokinesis.


Asunto(s)
Citocinesis/fisiología , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Cinesinas/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Huso Acromático , Anafase/fisiología , Animales , Western Blotting , Proteínas de Drosophila/antagonistas & inhibidores , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Cinesinas/antagonistas & inhibidores , Cinesinas/genética , ARN Interferente Pequeño/farmacología , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...