Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Small Methods ; 8(3): e2300836, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37926701

RESUMEN

Nb4 C3 Tx MXene has shown extraordinary promise for various applications owing to its unique physicochemical properties. However, it can only be synthesized by the traditional HF-based etching method, which uses large amounts of hazardous HF and requires a long etching time (> 96 h), thus limiting its practical application. Here, an ultra-efficient and environmental-friendly H2 O-assisted supercritical etching method is proposed for the preparation of Nb4 C3 Tx MXene. Benefiting from the synergetic effect between supercritical CO2 (SPC-CO2 ) and subcritical H2 O (SBC-H2 O), the etching time for Nb4 C3 Tx MXene can be dramatically shortened to 1 h. The as-synthesized Nb4 C3 Tx MXene possesses uniform accordion-like morphology and large interlayer spacing. When used as anode for Li-ion battery, the Nb4 C3 Tx MXene delivers a high reversible specific capacity of 430 mAh g-1 at 0.1 A g-1 , which is among the highest values achieved in pure-MXene-based anodes. The superior lithium storage performance of the Nb4 C3 Tx MXene can be ascribed to its high conductivity, fast Li+ diffusion kinetics and good structural stability.

2.
Nanomicro Lett ; 15(1): 231, 2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37851182

RESUMEN

2D MXene (Ti3CNTx) has been considered as the most promising electrode material for flexible supercapacitors owing to its metallic conductivity, ultra-high capacitance, and excellent flexibility. However, it suffers from a severe restacking problem during the electrode fabrication process, limiting the ion transport kinetics and the accessibility of ions in the electrodes, especially in the direction normal to the electrode surface. Herein, we report a NH3-induced in situ etching strategy to fabricate 3D-interconnected porous MXene/carbon dots (p-MC) films for high-performance flexible supercapacitor. The pre-intercalated carbon dots (CDs) first prevent the restacking of MXene to expose more inner electrochemical active sites. The partially decomposed CDs generate NH3 for in situ etching of MXene nanosheets toward 3D-interconnected p-MC films. Benefiting from the structural merits and the 3D-interconnected ionic transmission channels, p-MC film electrodes achieve excellent gravimetric capacitance (688.9 F g-1 at 2 A g-1) and superior rate capability. Moreover, the optimized p-MC electrode is assembled into an asymmetric solid-state flexible supercapacitor with high energy density and superior cycling stability, demonstrating the great promise of p-MC electrode for practical applications.

3.
World J Clin Cases ; 11(22): 5215-5223, 2023 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-37621579

RESUMEN

BACKGROUND: In patients with schizophrenia, the brain structure and neurotransmitter levels change, which may be related to the occurrence and progression of this disease. AIM: To explore the relationships between changes in neurotransmitters, brain structural characteristics, and the scores of the Positive and Negative Symptom Scale (PANSS) in patients with first-episode schizophrenia. METHODS: The case group comprised 97 patients with schizophrenia, who were evaluated using the Canadian Neurological Scale and confirmed by laboratory tests at Ningbo Mental Hospital from January 2020 to July 2022. The control group comprised 100 healthy participants. For all participants, brain structural characteristics were explored by measuring brain dopamine (DA), glutamic acid (Glu), and gamma-aminobutyric acid (GABA) levels, with magnetic resonance imaging. The case group was divided into negative and positive symptom subgroups using PANSS scores for hierarchical analysis. Linear correlation analysis was used to analyze the correlations between neurotransmitters, brain structural characteristics, and PANSS scores. RESULTS: Patients in the case group had higher levels of DA and lower levels of Glu and GABA, greater vertical and horizontal distances between the corpus callosum and the inferior part of the fornix and larger ventricle area than patients in the control group (P < 0.05). Patients with positive schizophrenia symptoms had significantly higher levels of DA, Glu, and GABA than those with negative symptoms (P < 0.05). In patients with positive schizophrenia symptoms, PANSS score was significantly positively correlated with DA, vertical and horizontal distances between the corpus callosum and the infrafornix, and ventricular area, and was significantly negatively correlated with Glu and GABA (P < 0.05). In patients with negative schizophrenia symptoms, PANSS score was significantly positively correlated with DA, vertical distance between the corpus callosum and the infrafornix, horizontal distance between the corpus callosum and the infrafornix, and ventricular area, and was significantly negatively correlated with Glu and GABA (P < 0.05). CONCLUSION: In patients with first-episode schizophrenia, DA levels increased, Glu and GABA levels decreased, the thickness of the corpus callosum increased, and these variables were correlated with PANSS scores.

4.
ACS Nano ; 17(3): 2431-2439, 2023 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-36656264

RESUMEN

Antimony (Sb) has been pursued as a promising anode material for sodium-ion batteries (SIBs). However, it suffers from severe volume expansion during the sodiation-desodiation process. Encapsulating Sb into a carbon matrix can effectively buffer the volume change of Sb. However, the sluggish Na+ diffusion kinetics in traditional carbon shells is still a bottleneck for achieving high-rate performance in Sb/C composite materials. Here we design and synthesize a yolk-shell Sb@Void@graphdiyne (GDY) nanobox (Sb@Void@GDY NB) anode for high-rate and long cycle life SIBs. The intrinsic in-plane cavities in GDY shells offer three-dimensional Na+ transporting channels, enabling fast Na+ diffusion through the GDY shells. Electrochemical kinetics analyses show that the Sb@Void@GDY NBs exhibit faster Na+ transport kinetics than traditional Sb@C NBs. In situ transmission electron microscopy analysis reveals that the hollow structure and the void space between Sb and GDY successfully accommodate the volume change of Sb during cycling, and the plastic GDY shell maintains the structural integrity of NBs. Benefiting from the above structural merits, the Sb@Void@GDY NBs exhibit excellent rate capability and extraordinary cycling stability.

5.
ACS Nano ; 16(11): 18746-18756, 2022 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-36343214

RESUMEN

Bismuth (Bi) has emerged as a promising anode material for fast-charging and long-cycling sodium-ion batteries (SIBs). However, its dramatically volumetric variations during cycling will undesirably cause the pulverization of active materials, severely limiting the electrochemical performance of Bi-based electrodes. Constructing hollow nanostructures is recognized as an effective way to resolve the volume expansion issues of alloy-type anodes but remains a great challenge for metallic bismuth. Here, we report a facile iodine-ion-assisted galvanic replacement approach for the synthesis of Bi nanotubes (NTs) for high-rate, long-term and high-capacity sodium storage. The hollow tubular structure effectively alleviates the structural strain during sodiation/desodiation processes, resulting in excellent structural stability; the thin wall and large surface area enable ultrafast sodium ion transport. Benefiting from the structural merits, the Bi NT electrode exhibits extraordinary rate capability (84% capacity retention at 150 A g-1) and outstanding cycling stability (74% capacity retention for 65,000 cycles at 50 A g-1), which represent the best rate performance and longest cycle life among all reported anodes for SIBs. Moreover, when coupled with the Na3(VOPO4)2F cathode in full cells, this electrode also demonstrates excellent cycling performance, showing the great promise of Bi NTs for practical application. A combination of advanced research techniques reveals that the excellent performance originates from the structural robustness of the Bi NTs and the fast electrochemical kinetics during cycling.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...