Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Am Chem Soc ; 145(48): 26287-26295, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38014508

RESUMEN

Surface reconstruction can rearrange the surface atoms of a crystal without the need of growth processes and has the potential to synthesize crystals with novel morphologies and facets that cannot be obtained through regular synthesis. However, little is known about the molecular mechanisms of the surface reconstruction process. Here, utilizing surface reconstruction, we report the synthesis of nonpolar facets (110) facets)-terminated dodecahedral zinc-blende CdSe/CdS core/shell quantum dots. The morphology transformation is achieved by first fully exchanging the cadmium carboxylate ligand with oleylamine and then undergoing surface reconstruction. The surface reconstruction-induced morphology transformation is confirmed by transmission electron microscopy and absorption spectroscopy. Details of kinetic experiments and simulation results demonstrated that successful surface reconstruction must be assisted by a proton shuttle. Except for the first report on zinc-blende quantum dots terminated with (110) facets, the surface reconstruction aided by the proton shuttle offers valuable insights for devising methods to regulate the properties of nanocrystals.

2.
ACS Macro Lett ; 12(7): 961-967, 2023 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-37384854

RESUMEN

Doping the boron (B) element endowed organic π-conjugated polymers (OCPs) with intriguing optoelectronic properties. Herein, we introduce a new series of thienylborane-pyridine (BN) Lewis pairs via the facile reactions between thienylborane and various pyridine derivatives. Particularly, we developed a "one-pot" synthetic protocol to access BN2 with an unstable 4-bromopyridine moiety. Polycondensations between the BN Lewis pairs and distannylated thiophene afforded a new series of BN-cross-linked polythiophenes (BN-PTs). Experiments revealed that BN-PTs exhibited highly uniform chemical structures, particularly the uniform chemical environment of B-centers. BN-PTs showed good stability in the solid state. PBN2 even maintained the uniform B-center under high temperature or moisture conditions. The studies further suggested that the presence of topological BN structures endowed the polymers with strong intramolecular charge separation character. As a proof of concept, a representative BN-PT was tested as the catalyst for photocatalytic hydrogen evolution.

3.
Nano Lett ; 23(3): 1061-1067, 2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36662173

RESUMEN

Thin films of ZnO nanocrystals are actively pursued as electron-transporting layers (ETLs) in quantum-dot light-emitting diodes (QLEDs). However, the developments of ZnO-based ETLs are highly engineering oriented and the design of ZnO-based ETLs remains empirical. Here, we identified a previously overlooked efficiency-loss channel associated with the ZnO-based ETLs: i.e., interfacial exciton quenching induced by surface-bound ethanol. Accordingly, we developed a general surface-treatment procedure to replace the redox-active surface-bound ethanol with electrochemically inert alkali carboxylates. Characterization results show that the surface treatment procedure does not change other key properties of the ETLs, such as the conductance and work function. Our single-variable experimental design unambiguously demonstrates that improving the electrochemical stabilities of the ZnO ETLs leads to QLEDs with a higher efficiency and longer operational lifetime. Our work provides a crucial guideline to design ZnO-based ETLs for optoelectronic devices.

4.
Materials (Basel) ; 14(23)2021 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-34885579

RESUMEN

Water pollution has always been a serious problem across the world; therefore, facile pollutant degradation via light irradiation has been an attractive issue in the field of environmental protection. In this study, a type of Zn-based metal-organic framework (ZIF-8)-wrapped BiVO4 nanorod (BiVO4@ZIF-8) with high efficiency for photocatalytic wastewater treatment was synthesized through a two-step hydrothermal method. The heterojunction structure of BiVO4@ZIF-8 was confirmed by morphology characterization. Due to the introduction of mesoporous ZIF-8, the specific surface area reached up to 304.5 m2/g, which was hundreds of times larger than that of pure BiVO4 nanorods. Furthermore, the band gap of BiVO4@ZIF-8 was narrowed down to 2.35 eV, which enabled its more efficient utilization of visible light. After irradiation under visible light for about 40 min, about 80% of rhodamine B (RhB) was degraded, which was much faster than using pure BiVO4 or other BiVO4-based photocatalysts. The synergistic photocatalysis mechanism of BiVO4@ZIF-8 is also discussed. This study might offer new pathways for effective degradation of wastewater through facile design of novel photocatalysts.

5.
J Org Chem ; 86(3): 2474-2488, 2021 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-33415975

RESUMEN

We present an efficient and versatile visible light-driven methodology to transform aryl aldehydes and ketones chemoselectively either to alcohols or to pinacol products with CdSe/CdS core/shell quantum dots as photocatalysts. Thiophenols were used as proton and hydrogen atom donors and as hole traps for the excited quantum dots (QDs) in these reactions. The two products can be switched from one to the other simply by changing the amount of thiophenol in the reaction system. The core/shell QD catalysts are highly efficient with a turn over number (TON) larger than 4 × 104 and 4 × 105 for the reduction to alcohol and pinacol formation, respectively, and are very stable so that they can be recycled for at least 10 times in the reactions without significant loss of catalytic activity. The additional advantages of this method include good functional group tolerance, mild reaction conditions, the allowance of selectively reducing aldehydes in the presence of ketones, and easiness for large scale reactions. Reaction mechanisms were studied by quenching experiments and a radical capture experiment, and the reasons for the switchover of the reaction pathways upon the change of reaction conditions are provided.

6.
ACS Nano ; 14(12): 16614-16623, 2020 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-33095559

RESUMEN

Wurtzite CdSe@CdS dot@platelet nanocrystals with (001) and (00-1) polar facets as the basal planes and (100) family of nonpolar facets as the side planes are applied for studying surface defects on semiconductor nanocrystals. When they are terminated with cadmium ions coordinated with carboxylate ligands, a single set of absorption features and band-edge photoluminescence (PL) with near unity PL quantum yield and monoexponential PL decay dynamics (lifetime ∼28 ns) are observed. In addition to these spectral signatures, when the surface is converted to sulfur-terminated, a second set of sharp absorption features with decent extinction coefficients and a secondary band-edge PL with low PL quantum yield and long-lifetime (>78 ns) PL decay dynamics are reproducibly recorded. Photochemical analysis confirms that the secondary UV-vis and PL spectral features are quantitatively correlated with each other. Chemical analysis and X-ray photoelectron spectroscopy measurements confirm that such secondary spectral features are well correlated with the sulfide (such as -SH) and disulfide (such as -S-S-) surface sites of a basal plane, which likely form surface hole electronic states delocalized on the entire basal plane. Results suggest that, for studying surface defects on semiconductor nanocrystals, it is essential to prepare a nearly monodisperse surface structure in terms of facets and surface chemical bonding.

7.
Nat Commun ; 11(1): 937, 2020 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-32071297

RESUMEN

Colloidal quantum dots are promising emitters for quantum-dot-based light-emitting-diodes. Though quantum dots have been synthesized with efficient, stable, and high colour-purity photoluminescence, inheriting their superior luminescent properties in light-emitting-diodes remains challenging. This is commonly attributed to unbalanced charge injection and/or interfacial exciton quenching in the devices. Here, a general but previously overlooked degradation channel in light-emitting-diodes, i.e., operando electrochemical reactions of surface ligands with injected charge carriers, is identified. We develop a strategy of applying electrochemically-inert ligands to quantum dots with excellent luminescent properties to bridge their photoluminescence-electroluminescence gap. This material-design principle is general for boosting electroluminescence efficiency and lifetime of the light-emitting-diodes, resulting in record-long operational lifetimes for both red-emitting light-emitting-diodes (T95 > 3800 h at 1000 cd m-2) and blue-emitting light-emitting-diodes (T50 > 10,000 h at 100 cd m-2). Our study provides a critical guideline for the quantum dots to be used in optoelectronic and electronic devices.

8.
Angew Chem Int Ed Engl ; 58(49): 17764-17770, 2019 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-31591763

RESUMEN

Facet-dependent on-surface reactions are systematically studied on zinc-blende CdSe nanoplatelets with atomically-flat {001} basal facets and small yet non-polar side facets. The on-surface half-reactions between the surface Se sites and Cd carboxylates in the solution are qualitatively equivalent to those on the spheroidal counterparts. Conversely, the on-surface half-reactions between the surface Cd sites and the activated Se precursors in solution show a strong facet-dependence, which includes three distinguishable stages. In the first stage, the Se precursors adsorb onto the small and non-polar side facets of the nanoplatelets. The second stage is initiated by the adsorbed Se precursors at the side-basal plane edges and proceeds from the edges to the center of the basal planes in quasi-zeroth-order kinetics. In the third stage, the nanoplatelets are dismantled, which includes the creation of a hole in the middle and a build-up of thick edges.

9.
J Am Chem Soc ; 141(44): 17617-17628, 2019 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-31610655

RESUMEN

Wurtzite CdSe@CdS dot@platelet nanocrystals, dot-shaped CdSe nanocrystals encased within epitaxially grown CdS nanoplatelets, are controllably synthesized with nearly monodisperse size and shape distribution and outstanding photoluminescence (PL) properties. The excellent size and shape control with their lateral to thickness dimension ratio up to 3:1 is achieved by systematically studying the synthetic parameters, which results in a simple, tunable, yet reproducible epitaxy scheme. These special types of core/shell nanocrystals possess two-dimensional emission dipoles with the ab plane of the wurtzite structure. While their near-unity PL quantum yield and monoexponential PL decay dynamics are at the same level of the state-of-art CdSe/CdS core/shell nanocrystals in dot shape, CdSe@CdS dot@platelet nanocrystals possess ∼2 orders of magnitude lower probability for initiating PL blinking at the single-nanocrystal level than the dot-shaped counterparts do.

10.
J Am Chem Soc ; 141(6): 2288-2298, 2019 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-30649864

RESUMEN

Mn2+-doped ZnSe nanocrystals (Mn:ZnSe d-dots) with high optical quality-high dopant emission quantum yield with monoexponential dopant-emission decay dynamics-enable systematic and quantitative studies of temperature- and Mn2+ concentration-dependent optical properties of the dopant emission, especially its relationship with magnetic coupling. While temperature-dependent steady-state and transient dopant emission of d-dots with dilute Mn2+ concentrations originated from isolated Mn2+ ions, and can be quantitatively treated as a result of exciton-phonon coupling of isolated paramagnetic emission centers. Dopant emission of d-dots with high Mn2+ concentrations (up to 50% of Zn2+ ions being replaced by Mn2+ ions in the core nanocrystals) are found solely related to magnetically coupled Mn2+ emission. Magnetic coupling effects on steady-state dopant emission of d-dots with high Mn2+ concentrations are much stronger than those observed for doped bulk semiconductors, which is found to follow a strong and universe shell-thickness dependence for the epitaxial ZnSe and/or ZnS shells of the d-dots. By exciting the magnetically coupled Mn2+ ions directly, dopant-emission of d-dots with high Mn2+ concentrations exhibit monoexponential decay dynamics. In addition to this emission channel, a minor channel with slightly longer decay lifetime appears when the host nanocrystals with high Mn2+ concentrations are excited, which is barely visible at room temperature and increases its fraction by decreasing temperature.

11.
J Org Chem ; 83(19): 11886-11895, 2018 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-30168324

RESUMEN

CdSe/CdS core/shell quantum dots (QDs) can be used as stable and highly active photoredox catalysts for efficient transfer hydrogenation of imines to amines with thiophenol as a hydrogen atom donor. This reaction proceeds via a proton-coupled electron transfer (PCET) from the QDs conduction band to the protonated imine followed by hydrogen atom transfer from the thiophenol to the α-aminoalkyl radical. This precious metal free transformation is easy to scale up and can be carried out by a one-pot protocol directly from aldehyde, amine, and thiophenol.  Additional advantageous features of this protocol include a wide substrate scope, high yield of the amine products, extremely low catalyst loading (0.001 mol %), high turnover number (105), and the mild reaction conditions of using visible light or sun light at room temperature in neutral media.

12.
J Am Chem Soc ; 140(29): 9174-9183, 2018 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-29956924

RESUMEN

On-surface reaction mechanisms during the growth of high-quality CdSe nanocrystals are studied quantitatively and systematically by introducing a cyclic growth scheme. Prior to the repeating growth cycles, presynthesized CdSe QD seeds from a conventional scheme are reacted with an activated Se precursor, which is found to include three elementary steps and generate Se-terminated CdSe QDs. The cyclic growth in amine-octadecene solution includes two repeating half-reactions. The first half-reaction is between cadmium carboxylates in the bulk solution and the Se-terminated QDs, and the other is between the Se precursor in the bulk solution and the Cd-terminated QDs generated by the first half-reaction. While two elementary steps in the Se-surface half-reaction can be quantitatively treated as parallel kinetics, two elementary steps for the Cd-surface half-reaction must be treated as consecutive steps. These elementary steps are found to possess substantially different reaction rates as well as activation energies. Results indicate that, in the growth of compound semiconductor nanocrystals with metal carboxylates as cationic precursor (or ligands), the elementary step between activated anionic precursors in the bulk solution and the cationic sites on the surface of nanocrystals would be the rate-limiting step. This rate-limiting step should be the one that causes nucleation (or formation of small clusters by solution reactions) to be substantially faster than the corresponding growth through on-surface reactions.

13.
Adv Mater ; 30(28): e1801387, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29808563

RESUMEN

Quantum-dot light-emitting diodes (QLEDs) may combine superior properties of colloidal quantum dots (QDs) and advantages of solution-based fabrication techniques to realize high-performance, large-area, and low-cost electroluminescence devices. In the state-of-the-art red QLED, an ultrathin insulating layer inserted between the QD layer and the oxide electron-transporting layer (ETL) is crucial for both optimizing charge balance and preserving the QDs' emissive properties. However, this key insulating layer demands very accurate and precise control over thicknesses at sub-10 nm level, causing substantial difficulties for industrial production. Here, it is reported that interfacial exciton quenching and charge balance can be independently controlled and optimized, leading to devices with efficiency and lifetime comparable to those of state-of-the-art devices. Suppressing exciton quenching at the ETL-QD interface, which is identified as being obligatory for high-performance devices, is achieved by adopting Zn0.9 Mg0.1 O nanocrystals, instead of ZnO nanocrystals, as ETLs. Optimizing charge balance is readily addressed by other device engineering approaches, such as controlling the oxide ETL/cathode interface and adjusting the thickness of the oxide ETL. These findings are extended to fabrication of high-efficiency green QLEDs without ultrathin insulating layers. The work may rationalize the design and fabrication of high-performance QLEDs without ultrathin insulating layers, representing a step forward to large-scale production and commercialization.

14.
Nat Commun ; 8(1): 1132, 2017 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-29070867

RESUMEN

Photonic quantum information requires high-purity, easily accessible, and scalable single-photon sources. Here, we report an electrically driven single-photon source based on colloidal quantum dots. Our solution-processed devices consist of isolated CdSe/CdS core/shell quantum dots sparsely buried in an insulating layer that is sandwiched between electron-transport and hole-transport layers. The devices generate single photons with near-optimal antibunching at room temperature, i.e., with a second-order temporal correlation function at zero delay (g (2)(0)) being <0.05 for the best devices without any spectral filtering or background correction. The optimal g (2)(0) from single-dot electroluminescence breaks the lower g (2)(0) limit of the corresponding single-dot photoluminescence. Such highly suppressed multi-photon-emission probability is attributed to both novel device design and carrier injection/recombination dynamics. The device structure prevents background electroluminescence while offering efficient single-dot electroluminescence. A quantitative model is developed to illustrate the carrier injection/recombination dynamics of single-dot electroluminescence.

15.
J Am Chem Soc ; 139(9): 3302-3311, 2017 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-28170239

RESUMEN

Colloidal quantum dots are promising optical and optoelectronic materials for various applications, whose performance is dominated by their excited-state properties. This article illustrates synthetic control of their excited states. Description of the excited states of quantum-dot emitters can be centered around exciton. We shall discuss that, different from conventional molecular emitters, ground-state structures of quantum dots are not necessarily correlated with their excited states. Synthetic control of exciton behavior heavily relies on convenient and affordable monitoring tools. For synthetic development of ideal optical and optoelectronic emitters, the key process is decay of band-edge excitons, which renders transient photoluminescence as important monitoring tool. On the basis of extensive synthetic developments in the past 20-30 years, synthetic control of exciton behavior implies surface engineering of quantum dots, including surface cation/anion stoichiometry, organic ligands, inorganic epitaxial shells, etc. For phosphors based on quantum dots doped with transition metal ions, concentration and location of the dopant ions within a nanocrystal lattice are found to be as important as control of the surface states in order to obtain bright dopant emission with monoexponential yet tunable photoluminescence decay dynamics.

16.
J Am Chem Soc ; 138(26): 8134-42, 2016 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-27312799

RESUMEN

Electronic traps at the inorganic-organic interface of colloidal quantum dots (QDs) are detrimental to their luminescent properties. Several types of interface traps were identified for single-crystalline CdSe/CdS core/shell QDs, which were all found to be extrinsic to either the core/shell structure or their optical performance. The electron traps-presumably excess or unpassivated Cd surface sites-are shallow ones and could be readily isolated from the electron wave function of the excitons with more than ∼2 monolayers of CdS shell. There were two identifiable deep hole traps within the bandgap of the QDs, i.e., the surface adsorbed H2S and unpassivated surface S sites. The surface adsorbed H2S could be removed by either degassing processes or photochemical decomposition of H2S without damaging the QDs. The unpassivated surface S sites could be removed by surface treatment with cadmium carboxylates. Understanding of the surface traps enabled establishment of new phosphine-free synthetic schemes for either single-precursor or successive-ion-layer-adsorption-and-reaction approach, which yielded CdSe/CdS core/shell QDs with near-unity photoluminescence quantum yield and monoexponential photoluminescence decay dynamics with 2-10 monolayers of CdS shell.

17.
ACS Cent Sci ; 2(1): 32-9, 2016 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-27163024

RESUMEN

Transition metal doped semiconductor nanocrystals (d-dots) possess fundamentally different emission properties upon photo- or electroexcitation, which render them as unique emitters for special applications. However, in comparison with intrinsic semiconductor nanocrystals, the potential of d-dots has been barely realized, because many of their unique emission properties mostly rely on precise control of their photoluminescence (PL) decay dynamics. Results in this work revealed that it would be possible to obtain bright d-dots with nearly single-exponential PL decay dynamics. By tuning the number of Mn(2+) ions per dot from ∼500 to 20 in Mn(2+) doped ZnSe nanocrystals (Mn:ZnSe d-dots), the single-exponential PL decay lifetime was continuously tuned from ∼50 to 1000 µs. A synthetic scheme was further developed for uniform and epitaxial growth of thick ZnS shell, ∼7 monolayers. The resulting Mn:ZnSe/ZnS core/shell d-dots were found to be essential for necessary environmental durability of the PL properties, both steady-state and transient ones, for the d-dot emitters. These characteristics combined with intense absorption and high PL quantum yields (70 ± 5%) enabled greatly simplified schemes for various applications of PL lifetime multiplexing using Mn:ZnSe/ZnS core/shell d-dots.

18.
J Am Chem Soc ; 138(20): 6475-83, 2016 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-27144923

RESUMEN

CdSe magic-size clusters with close-shell surface and fixed molecular formula are well-known in the size range between ∼1 and 3 nm. By applying high concentration of cadmium alkanoates as ligands, a conventional synthetic system for CdSe nanocrystals was tuned to discriminate completion from initiation of atomic flat facets. This resulted in ∼4-13 nm CdSe nanocrystals with hexahedral shape terminated with low-index facets, namely three (100), one (110), and two (111) facets. These low-symmetry (Cs group with single mirror plane) yet monodisperse hexahedra were found to be persistent not only in a broad size range but also under typical synthetic temperatures for growth of both CdSe and CdS. Atomic motion on the surface of the nanocrystals under enhanced ligand dynamics initiated intraparticle ripening without activating interparticle ripening, which converted the hexahedral nanocrystals to monodisperse spherical ones. This new synthetic strategy rendered optimal color purity of photoluminescence (PL) of the CdSe and CdSe/CdS core/shell nanocrystals, with the ensemble PL peak width comparable with that of a corresponding single dot.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA