Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Sci Technol ; 58(18): 7891-7903, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38602183

RESUMEN

Tropospheric nitrogen dioxide (NO2) poses a serious threat to the environmental quality and public health. Satellite NO2 observations have been continuously used to monitor NO2 variations and improve model performances. However, the accuracy of satellite NO2 retrieval depends on the knowledge of aerosol optical properties, in particular for urban agglomerations accompanied by significant changes in aerosol characteristics. In this study, we investigate the impacts of aerosol composition on tropospheric NO2 retrieval for an 18 year global data set from Global Ozone Monitoring Experiment (GOME)-series satellite sensors. With a focus on cloud-free scenes dominated by the presence of aerosols, individual aerosol composition affects the uncertainties of tropospheric NO2 columns through impacts on the aerosol loading amount, relative vertical distribution of aerosol and NO2, aerosol absorption properties, and surface albedo determination. Among aerosol compositions, secondary inorganic aerosol mostly dominates the NO2 uncertainty by up to 43.5% in urban agglomerations, while organic aerosols contribute significantly to the NO2 uncertainty by -8.9 to 37.3% during biomass burning seasons. The possible contrary influences from different aerosol species highlight the importance and complexity of aerosol correction on tropospheric NO2 retrieval and indicate the need for a full picture of aerosol properties. This is of particular importance for interpreting seasonal variations or long-term trends of tropospheric NO2 columns as well as for mitigating ozone and fine particulate matter pollution.


Asunto(s)
Aerosoles , Contaminantes Atmosféricos , Monitoreo del Ambiente , Dióxido de Nitrógeno , Estaciones del Año , Dióxido de Nitrógeno/análisis , Contaminantes Atmosféricos/análisis , Ozono/análisis
2.
Sensors (Basel) ; 24(8)2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38676189

RESUMEN

The Advanced Geostationary Radiation Imager (AGRI) carried by the FengYun-4A (FY-4A) satellite enables the continuous observation of local weather. However, FY-4A/AGRI infrared satellite observations are strongly influenced by clouds, which complicates their use in all-sky data assimilation. The presence of clouds leads to increased uncertainty, and the observation-minus-background (O-B) differences can significantly deviate from the Gaussian distribution assumed in the variational data assimilation theory. In this study, we introduce two cloud-affected (Ca) indices to quantify the impact of cloud amount and establish dynamic observation error models to address biases between O-B and Gaussian distributions when assimilating all-sky data from FY-4A/AGRI observations. For each Ca index, we evaluate two dynamic observation error models: a two-segment and a three-segment linear model. Our findings indicate that the three-segment linear model we propose better conforms to the statistical characteristics of FY-4A/AGRI observations and improves the Gaussianity of the O-B probability density function. Dynamic observation error models developed in this study are capable of handling cloud-free or cloud-affected FY-4A/AGRI observations in a uniform manner without cloud detection.

3.
Geophys Res Lett ; 48(4): 2e020GL091265, 2021 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-33785972

RESUMEN

Satellite HCHO data are widely used as a reliable proxy of non-methane volatile organic compounds (NMVOCs) to constrain underlying emissions and chemistry. Here, we examine global significant changes in HCHO columns at the early stage of the COVID-19 pandemic (January-April 2020) compared with the same period in 2019 with observations from the TROPOspheric Monitoring Instrument (TROPOMI). HCHO columns decline (11.0%) in the Northern China Plain (NCP) because of a combination of meteorological impacts, lower HCHO yields as NO x emission plunges (by 36.0%), and reduced NMVOC emissions (by 15.0%) resulting from the lockdown. HCHO columns change near Beijing (+8.4%) due mainly to elevated hydroxyl radical as NO x emission decreases in a NO x -saturated regime. HCHO columns change in Australia (+17.5%), Northeastern Myanmar of Southeast Asia (+14.9%), Central Africa (+7.8%), and Central America (+18.9%), consistent with fire activities. Our work also points to other changes related to temperature and meteorological variations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...