Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-36554439

RESUMEN

C-X-C motif chemokine receptor 4 (CXCR4), stromal cell-derived factor-1 (SDF-1), monocyte chemoattractant protein-1 (MCP-1), extracellular signal-regulated kinase 1/2 (ERK1/2) and nuclear factor-κB (NF-κB) affect bone cells and play an important role in bone and joint diseases, but the data on CXCR4, SDF-1, MCP-1, ERK1/2 and NF-κB in the serum of skeletal fluorosis (SF) patients are inconclusive. Thus, according to the "Diagnostic Criteria for Endemic Skeletal Fluorosis" (WS 192-2008), we enrolled patients with SF (n = 60) as the SF group and those without SF as the controls (n = 60). Serum levels of CXCR4, SDF-1, MCP-1, ERK1/2 and NF-κB were detected by enzyme-linked immunosorbent assays (ELISAs). Serum SDF-1, CXCR4, MCP-1 and NF-κB levels were significantly higher in the SF group than in the control group. Within the serum of SF patients, CXCR4 and SDF-1 levels were positively correlated with NF-κB levels. There was no correlation between MCP-1 levels and those of ERK1/2 or NF-κB. SDF-1 and CXCR4 may activate the NF-κB pathway, and MCP-1 affects the occurrence and development of SF by regulating osteocytes through other pathways. The SDF-1/CXCR4 axis and MCP-1 signalling pathway provide a new theoretical basis for the occurrence and development of SF.


Asunto(s)
Enfermedades Óseas , Sistema de Señalización de MAP Quinasas , FN-kappa B , Humanos , Quimiocina CCL2/sangre , Proteína Quinasa 3 Activada por Mitógenos/sangre , FN-kappa B/sangre , Receptores CXCR4/sangre , Transducción de Señal , Enfermedades Óseas/sangre , Enfermedades Óseas/diagnóstico
2.
Zhongguo Zhong Yao Za Zhi ; 37(1): 23-31, 2012 Jan.
Artículo en Chino | MEDLINE | ID: mdl-22741456

RESUMEN

OBJECTIVE: The genetic diversity and genetic relationship of Jatropha curcas resources in Sichuan and Yunnan were studied in order to provide a theoretical basis for breeding fine varieties and protecting germplasm resources. METHOD: Ten J. curcas populations were studied by 12 cpSSR primers in this paper. On the base of amplified bands, genetic diversity parameters were analyzed by POPGENE version 1.32. Furthermore, UPGMA tree of 10 J. curcas populations established from pairwise population distance by NTSYSpc version 2.10. RESULT: Twenty-two polymorphic bands were detected, and the percentage of polymorphic loci (P) was 76.28%. Among of the 10 J. curcas populations, the average percentage of polymorphic loci of YNSB was higher than that of the other populations, and it reached 95.45%; On the other hand, that of YNLS was the lowest in all populations, and it was 45.45%. Nei's gene diversity index(H(e)), Shannon information index(I), Effective Num of alleles(A(e)) were respectively 0.4020, 0.576 7, 1.713 6. The total gene diversity (H(T)), the gene differentiation coefficient (G(st)), the gene flow (N(m)) and the gene diversity within populations (H(s)) were 0.443 3, 0.080 2, 3.058 5, 0.405 1, 0.035 7, respectively. The highest gene diversity ratio was showed within populations and the lowest among populations. The results by AMOVA analysis showed that 91.02% of genetic variation existed within populations while 8.98% of genetic variation existed among populations. On the base of the results, the conclusion was extracted that variation existed mainly within populations, and the variation within populations was bigger than that among populations. The result was consistent with that of the gene differentiation coefficient. The order of the genetic diversity was YNLS population < XSBN population < SCHPZ population < SCHD population < SCJH population < YNPR population < SCLB population < YNSB population < YNFY population < SCHL population. The range of Nei's genetic identity and genetic distance of 10 respectively populations were respectively 0.812 7-0.979 8, 0.020 4-0.207 3. All these showed the similarity was higher and there was a close relationship among the 10 respectively populations; Results based on the cluster analysis showed that 10 respectively populations were divided into 2 groups: one was SCJH population and CHPZ population, the other was SCHL population, SCHD population, SCLB population, YNSB population, YNFY population, YNPR population, XSBN population and YNLS population. CONCLUSION: Significant genetic diversity was observed among respectively resources in Sichuan and Yunnan. On the other hand, genetic relationship was close between populations.


Asunto(s)
Cloroplastos/genética , Variación Genética , Jatropha/genética , Repeticiones de Microsatélite , China , Marcadores Genéticos , Jatropha/clasificación , Filogenia
3.
Zhongguo Zhong Yao Za Zhi ; 36(7): 817-22, 2011 Apr.
Artículo en Chino | MEDLINE | ID: mdl-21761715

RESUMEN

OBJECTIVE: The experiment was conducted to study the effect of soaking seeds with biogas slurry on seed germination and growth of Tagetes erecta so that we can provide theory base for cultivation management of T. ercta. METHOD: In order to find the best combine of biogas slurry concentration (25%, 50%, 75%, 100%) and soaking time (2, 3, 4, 5 h), completely randomized design was selected, germination percentage, seedling height, root length, root activity, content of chlorophyll (a, b) and MDA were analyzed and principle component analysis was adopted. RESULT: Both soaking for 5 h in 25% biogas slurry and soaking for 4 h in 50% biogas slurry had the highest germination percentage (81.3%). Soaking for 5 h in 50% biogas slurry had the longest root, and soaking for 4 h in 50% biogas slurry had the highest root activity. They were significant higher than other 19 treatments. Soaking for 5 h in 50% biogas slurry had the highest content of chlorophyll a, chlorophyll b, chlorophyll (a + b) and ratio of chlorophyll a/ chlorophyll b. It was significant higher in these index, except b, than other 19 treatment. Soaking for 5 h in 25% biogas slurry had the lowest MDA content (0.0280 micromol x L(-1)), then was Soaking for 4 h in 50% biogas slurry (0.0286 micromol x L(-1) in MDA content). CONCLUSION: Appropriate biogas slurry concentration combined with seed soaking time can improve the germination and growth of T. erecta. As a whole, soaking for 5 h in 50% biogas slurry had the best effects on germination and growth in seedling stage for T. erecta.


Asunto(s)
Biocombustibles , Germinación , Inmersión , Plantones/crecimiento & desarrollo , Semillas/crecimiento & desarrollo , Tagetes/crecimiento & desarrollo , Plantones/anatomía & histología , Semillas/anatomía & histología , Tagetes/anatomía & histología , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...