Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
J Sci Food Agric ; 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39177297

RESUMEN

BACKGROUND: Enshi Yulu tea (ESYL) is the most representative of steamed green tea in China, but its aroma formation in processing is unclear. Thus, the ESYL volatiles during the whole industrial processing were investigated using headspace solid-phase microextraction coupled with gas chromatography-mass spectrometry. RESULTS: A total of 134 volatiles were identified. Among these, 31 differential volatiles [P < 0.05 and variable importance in projection (VIP) > 1] and 25 key volatiles [relative odor activity value (rOAV) and/or the ratio of each rOAV to the maximum rOAV (ROAV) > 1.0] were screened out, wherein ß-ionone and nonanal were the most key odorants. Besides, the sensory evaluation combined with multivariate statistical analysis of volatiles pinpointed spreading, fixation, first drying, and second drying as the key processing steps that have a pronounced influence on the aroma quality of ESYL. Furthermore, the oxidative degradation of unsaturated fatty acids, synthesis of monoterpenes, and degradation of carotenoids were the main metabolic pathway for the formation of key odorants. CONCLUSION: The study provides comprehensive insights into the volatile characteristics during the industrial processing of ESYL and promote our understanding of the aroma formation in steamed green teas. © 2024 Society of Chemical Industry.

2.
Biomolecules ; 14(7)2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39062573

RESUMEN

Signaling pathways are responsible for transmitting information between cells and regulating cell growth, differentiation, and death. Proteins in cells form complexes by interacting with each other through specific structural domains, playing a crucial role in various biological functions and cell signaling pathways. Protein-protein interactions (PPIs) within cell signaling pathways are essential for signal transmission and regulation. The spatiotemporal features of PPIs in signaling pathways are crucial for comprehending the regulatory mechanisms of signal transduction. Bimolecular fluorescence complementation (BiFC) is one kind of imaging tool for the direct visualization of PPIs in living cells and has been widely utilized to uncover novel PPIs in various organisms. BiFC demonstrates significant potential for application in various areas of biological research, drug development, disease diagnosis and treatment, and other related fields. This review systematically summarizes and analyzes the technical advancement of BiFC and its utilization in elucidating PPIs within established cell signaling pathways, including TOR, PI3K/Akt, Wnt/ß-catenin, NF-κB, and MAPK. Additionally, it explores the application of this technology in revealing PPIs within the plant hormone signaling pathways of ethylene, auxin, Gibberellin, and abscisic acid. Using BiFC in conjunction with CRISPR-Cas9, live-cell imaging, and ultra-high-resolution microscopy will enhance our comprehension of PPIs in cell signaling pathways.


Asunto(s)
Transducción de Señal , Humanos , Animales , Mapeo de Interacción de Proteínas/métodos , Fluorescencia
3.
Food Chem ; 458: 140145, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-38943956

RESUMEN

Although Enshi Yulu tea (ESYL) possesses a distinctive fragrance, there is a scarcity of studies focusing on its primary volatiles or aroma genesis. This study aims to elucidate the dynamics in the profiles of aromas and volatiles through aroma profiling analysis and headspace solid-phase microextraction/gas chromatography-mass spectrometry. A total of 10 aroma attributes and 128 volatiles were identified in ESYL, with geraniol and linalool exhibiting the highest levels, and alcohols constituting the predominant proportion. Besides, a relative odor activity value (ROAV) based molecular aroma wheel was constructed, revealing 12 key odorants with ROAVs >1, wherein linalool, ß-ionone, and nonanal ranked highest. Notably, steaming and final drying emerged as critical steps for ESYL aroma development, while the non-enzymatic degradation of fatty acids likely contributed to the formation of its fresh aroma. These findings significantly enhance our comprehension of ESYL aroma formation.


Asunto(s)
Cromatografía de Gases y Espectrometría de Masas , Odorantes , Microextracción en Fase Sólida , Compuestos Orgánicos Volátiles , Compuestos Orgánicos Volátiles/química , Odorantes/análisis , Manipulación de Alimentos , Té/química , Camellia sinensis/química , Monoterpenos Acíclicos/química , Monoterpenos Acíclicos/análisis
4.
Insect Sci ; 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38812265

RESUMEN

The silk gland of the silkworm Bombyx mori serves as a valuable model for investigating the morphological structure and physiological functions of organs. Previous studies have demonstrated the notable regulatory role of let-7 microRNA in the silk gland, but its specific molecular mechanism remains to be elucidated across different segments of this organ. In this study, we further investigated the functional mechanism of let-7 in the middle silk gland (MSG). The MSG of a let-7 knockout strain was analyzed using a combined proteomic and metabolomic technique, revealing the enrichment of differential proteins and metabolites in the DNA synthesis and energy metabolism pathways. BmCentrin was identified as a novel target gene of let-7 in the MSG, and its downregulation inhibited the proliferation of BmN4-SID1 cells, which is exactly opposite to the role of let-7 in these cells. CRISPR/Cas9 genome editing and transgenic technologies were employed to manipulate BmCentrin in the MSG. Knockout of BmCentrin led to severe MSG atrophy, whereas the overexpression of BmCentrin resulted in beaded MSG. Further measurements of these knockout or overexpression strains revealed significant changes in the expression levels of sericin protein genes, the weight of the cocoon and the mechanical properties of the silk. Investigating the biological role of BmCentrin in the silk gland offers valuable insights for elucidating the molecular mechanisms by which let-7 controls silk gland development and silk protein synthesis in the silkworm.

5.
Insect Sci ; 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38783627

RESUMEN

Hematophagous female mosquitoes are important vectors of numerous devastating human diseases, posing a major public health threat. Effective prevention and control of mosquito-borne diseases rely considerably on progress in understanding the molecular mechanisms of various life activities, and accordingly, the molecules that regulate the various life activities of mosquitoes are potential targets for implementing future vector control strategies. Many long non-coding RNAs (lncRNAs) have been identified in mosquitoes and significant progress has been made in determining their functions. Here, we present a comprehensive overview of the research advances on mosquito lncRNAs, including their molecular identification, function, and interaction with other non-coding RNAs, as well as their synergistic regulatory roles in mosquito life activities. We also highlight the potential roles of competitive endogenous RNAs in mosquito growth and development, as well as in insecticide resistance and virus-host interactions. Insights into the biological functions and mechanisms of lncRNAs in mosquito life activities, viral replication, pathogenesis, and transmission will contribute to the development of novel drugs and safe vaccines.

6.
Mol Carcinog ; 63(7): 1392-1405, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38651944

RESUMEN

Na, K-ATPase interaction (NKAIN) is a transmembrane protein family, which can interact with Na, K-ATPase ß1 subunit. NKAIN1 plays an important role in alcohol-dependent diseases such as endometrial and prostate cancers. However, the relationship between NKAIN1 and human breast cancer has not been studied. Hence, this study aimed to explore the relationship between NKAIN1 expression and breast cancer. Data used in this study were mainly from the Cancer Genome Atlas, including differential expression analysis, Kaplan-Meier survival analysis, receiver operating characteristic curve analysis, multiple Cox regression analysis, co-expression gene analysis, and gene set enrichment analysis. Analyses were performed using reverse transcription-quantitative polymerase chain reaction, western blot analysis, and immunohistochemistry on 46 collected samples. The knockdown or overexpression of NKAIN1 in vitro in MCF-7 and MDA-MB-231 cell lines altered the proliferation and migration abilities of tumor cells. In vivo experiments further confirmed that NKAIN1 knockdown effectively inhibited the proliferation and migration of cancer cells. Therefore, our study identified NKAIN1 as an oncogene that is highly expressed in breast cancer tissues. The findings highlight the potential of NKAIN1 as a molecular biomarker of breast cancer.


Asunto(s)
Biomarcadores de Tumor , Neoplasias de la Mama , Movimiento Celular , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias de la Mama/patología , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Femenino , Pronóstico , Animales , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Ratones , Línea Celular Tumoral , Oncogenes , Ratones Desnudos , Células MCF-7 , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones Endogámicos BALB C , Metástasis de la Neoplasia , Persona de Mediana Edad
7.
Sci Total Environ ; 929: 172580, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38657822

RESUMEN

The prevalence of microplastics (MPs), especially aged particles, interacting with contaminants like triclosan (TCS), raises concerns about their toxicological effects on aquatic life. This study focused on the impact of aged polyamide (APA) MPs and TCS on zebrafish lipid metabolism. APA MPs, with rougher surfaces and lower hydrophobicity, exhibited reduced TCS adsorption than unaged polyamide (PA) MPs. Co-exposure to PA/APA MPs and TCS resulted in higher TCS accumulation in zebrafish larvae, notably more with PA than APA. Larvae exposed to PA + TCS exhibited greater oxidative stress, disrupted lipid metabolism, and altered insulin pathway genes than those exposed to TCS. However, these negative effects were lessened in the APA + TCS group. Through miRNA-seq and miR-217 microinjection, it was revealed that PA + TCS co-exposure upregulated miR-217, linked to lipid metabolic disorders in zebrafish. Moreover, molecular docking showed stable interactions formed between PA, TCS, and the insulin signaling protein Pik3r2. This study demonstrated that PA and TCS co-exposure significantly inhibited the insulin signaling in zebrafish, triggering lipid metabolism dysregulation mediated by miR-217 upregulation, while APA and TCS co-exposure alleviated these disruptions. This research underscored the ecological and toxicological risks of aged MPs and pollutants in aquatic environments, providing crucial insights into the wider implications of MPs pollution.


Asunto(s)
Metabolismo de los Lípidos , MicroARNs , Microplásticos , Triclosán , Contaminantes Químicos del Agua , Pez Cebra , Animales , Larva/efectos de los fármacos , Metabolismo de los Lípidos/efectos de los fármacos , Microplásticos/toxicidad , MicroARNs/metabolismo , MicroARNs/genética , Triclosán/toxicidad , Contaminantes Químicos del Agua/toxicidad
8.
PLoS One ; 19(2): e0298207, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38330049

RESUMEN

PURPOSE: To compare the ability of diffusion parameters obtained by stretched-exponential and kurtosis models of diffusion-weighted imaging (DWI) to distinguish between patients with primary aldosteronism (PA) and healthy controls (HCs) in renal assessment. MATERIALS AND METHODS: A total of 44 participants (22 patients and 22 HCs) underwent renal MRI with an 11 b-value DWI sequence and a 3 b-value diffusion kurtosis imaging (DKI) sequence from June 2021 to April 2022. Binary logistic regression was used to construct regression models combining different diffusion parameters. Receiver-operating characteristic (ROC) curve analysis and comparisons were used to evaluate the ability of single diffusion parameters and combined diffusion models to distinguish between the two groups. RESULTS: A total of six diffusion parameters (including the cortical anomalous exponent term [α_Cortex], medullary fractional anisotropy [FA_Medulla], cortical FA [FA_Cortex], cortical axial diffusivity [Da_Cortex], medullary mean diffusivity [MD_Medulla] and medullary radial diffusivity [Dr_Medulla]) were included, and 10 regression models were studied. The area under the curve (AUC) of Dr_Medulla was 0.855, comparable to that of FA_Cortex and FA_Medulla and significantly higher than that of α_Cortex, Da_Cortex and MD_Medulla. The AUC of the Model_all parameters was 0.967, comparable to that of Model_FA (0.946) and Model_DKI (0.966) and significantly higher than that of the other models. The sensitivity and specificity of Model_all parameters were 87.2% and 95%, respectively. CONCLUSION: The Model_all parameters, Model_FA and Model_DKI were valid for differentiating between PA patients and HCs with similar differentiation efficacy and were superior to single diffusion parameters and other models.


Asunto(s)
Imagen de Difusión por Resonancia Magnética , Hiperaldosteronismo , Humanos , Imagen de Difusión por Resonancia Magnética/métodos , Riñón/diagnóstico por imagen , Imagen de Difusión Tensora/métodos , Imagen por Resonancia Magnética/métodos , Hiperaldosteronismo/diagnóstico por imagen
9.
Chemosphere ; 352: 141395, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38342143

RESUMEN

Triclosan (TCS), a prevalent contaminant in aquatic ecosystems, has been identified as a potential threat to both aquatic biota and human health. Despite its widespread presence, research into the immunotoxic effects of TCS on aquatic organisms is limited, and the underlying mechanisms driving these effects remain largely unexplored. Herein, we investigated the developmental and immune toxicities of environmentally relevant concentrations of TCS in zebrafish, characterized by morphological anomalies, histopathological impairments, and fluctuations in cytological differentiation and biomarkers following both acute (from 6 to 72/120 hpf) and chronic exposure periods (from 30 to 100 dpf). Specifically, acute exposure to TCS resulted in a significant increase in innate immune cells, contrasted by a marked decrease in T cells. Furthermore, we observed that TCS exposure elicited oxidative stress and a reduction in global m6A levels, alongside abnormal expressions within the m6A modification enzyme system in zebrafish larvae. Molecular docking studies suggested that mettl3 might be a target molecule for TCS interaction. Intriguingly, the knock-down of mettl3 mirrored the effects of TCS exposure, adversely impacting the growth and development of zebrafish, as well as the differentiation of innate immune cells. These results provide insights into the molecular basis of TCS-induced immunotoxicity through m6A-RNA epigenetic modification and aid in assessing its ecological risks, informing strategies for disease prevention linked to environmental contaminants.


Asunto(s)
Triclosán , Contaminantes Químicos del Agua , Animales , Humanos , Triclosán/toxicidad , Triclosán/metabolismo , Pez Cebra/metabolismo , Regulación hacia Abajo , Metilación de ARN , Ecosistema , Simulación del Acoplamiento Molecular , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/metabolismo
10.
Cancers (Basel) ; 15(22)2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-38001753

RESUMEN

Breast cancer (BRCA) is a highly heterogeneous systemic disease. It is ranked first globally in the incidence of new cancer cases and has emerged as the primary cause of cancer-related death among females. Among the distinct subtypes of BRCA, triple-positive breast cancer (TPBC) has been associated with increased metastasis and invasiveness, exhibiting greater resistance to endocrine therapy involving trastuzumab. It is now understood that invasion, metastasis, and treatment resistance associated with BRCA progression are not exclusively due to breast tumor cells but are from the intricate interplay between BRCA and its tumor microenvironment (TME). Accordingly, understanding the pathogenesis and evolution of the TPBC microenvironment demands a comprehensive approach. Moreover, addressing BRCA treatment necessitates a holistic consideration of the TME, bearing significant implications for identifying novel targets for anticancer interventions. This review expounds on the relationship between critical cellular components and factors in the TPBC microenvironment and the inception, advancement, and therapeutic resistance of breast cancer to provide perspectives on the latest research on TPBC.

11.
Eur J Med Res ; 28(1): 510, 2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-37964281

RESUMEN

BACKGROUND: Breast cancer is the most common malignant tumor among women worldwide. GREB1L is a protein-coding gene. Previous studies have shown that GREB1L plays a vital role in lung and gastric adenocarcinoma. Currently, there is no relevant report about its role in breast cancer. METHODS: The Cancer Genome Atlas database was used to compare the expression level of GREB1L between tumor and normal tissues. The TISIDB website was used for prognosis analysis. The LinkedOmics database was used to predict the potential biological mechanism of GREB1L in breast cancer. Immunohistochemistry was used to detect the GREB1L expression level in breast tissue. Western blotting was used to detect the GREB1L expression level in cell lines. Transwell assays, CCK-8 cell proliferation assays, and colony formation assays were used to detect the migration, invasion, proliferation, and colony formation abilities of cells. Subcutaneous xenograft models were used to detect the in vivo tumor formation abilities of cells. RESULTS: GREB1L is highly expressed in breast cancer tissues and breast cancer cells. KEGG enrichment analysis suggested that GREB1L participates in the regulation of the Hedgehog signaling pathway; changes in GREB1L expression affected the migration and invasion abilities of MCF7 and MDA-MB-231 cells. Although changes in GREB1L expression did not affect their proliferation and colony formation abilities in vitro and in vivo, they affected the expression of tumor metastasis-related genes in vivo. The overexpression of GREB1L in breast cancer predicted a favorable prognosis. CONCLUSION: These results showed that GREB1L is involved in the development of breast cancer, and it may be a potential molecular marker for predicting the prognosis of breast cancer.


Asunto(s)
Neoplasias de la Mama , Femenino , Humanos , Neoplasias de la Mama/patología , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Pronóstico , Transducción de Señal
12.
Sci Total Environ ; 903: 166505, 2023 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-37625730

RESUMEN

Azithromycin (AZM) is a widely used antibiotic in both human and veterinary medicine, and its use has significantly increased during the COVID-19 pandemic. However, potential adverse effects of AZM on aquatic organisms have not been well studied. In this study, we explored the neurotoxicity of AZM in zebrafish and delved into its underlying mechanisms. Our results showed that AZM exposure resulted in a spectrum of detrimental effects in zebrafish, encompassing abnormal behaviors, damaged neuronal development, aberrant lateral line nervous system development, vascular malformations and perturbed expression of genes related to neural development. Moreover, we observed a concentration-dependent exacerbation of these neurotoxic manifestations with increasing AZM concentrations. Notably, AZM induced excessive cell apoptosis and oxidative stress damage. In addition, alterations in the expression levels of the genes involved in the VEGF/Notch signaling pathway were evident in AZM-exposed zebrafish. Consequently, we hypothesize that AZM may induce neurotoxicity by influencing the VEGF/Notch signaling pathway. To validate this hypothesis, we introduced a VEGF signaling inhibitor, axitinib, and a Notch signaling agonist, valproic acid, alongside AZM exposure. Remarkably, the administration of these rescue compounds significantly mitigated the neurotoxic effects induced by AZM. This dual verification provides compelling evidence that AZM indeed induces neurotoxicity during the early developmental stages of zebrafish, primarily through its interference with the VEGF/Notch pathway. Innovatively, our study reveals the molecular mechanism of AZM-induced neurotoxicity from the perspective of the close connection between blood vessels and nervous system. These findings provide new insights into the potential mechanisms underlying the neurotoxic effect of antibiotics and highlight the need for further investigation into the ecotoxicological effects of antibiotics on aquatic organisms and the potential risks to human health.

13.
Parasit Vectors ; 16(1): 271, 2023 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-37559132

RESUMEN

BACKGROUND: Pathogenic viruses can be transmitted by female Aedes aegypti (Ae. aegypti) mosquitoes during blood-meal acquisition from vertebrates. Silencing of mosquito- and midgut-specific microRNA (miRNA) 1174 (miR-1174) impairs blood intake and increases mortality. Determining the identity of the proteins and metabolites that respond to miR-1174 depletion will increase our understanding of the molecular mechanisms of this miRNA in controlling blood-feeding and nutrient metabolism of mosquitoes. METHODS: Antisense oligonucleotides (antagomirs [Ant]) Ant-1174 and Ant-Ct were injected into female Ae. aegypti mosquitoes at 12-20 h posteclosion, and depletion of miR-1174 was confirmed by reverse transcription quantitative real-time PCR (RT-qPCR). Ant-1174-injected and control mosquitoes were collected before the blood meal at 72 h post-injection for tandem mass tag-based proteomic analysis and liquid chromatography-tandom mass spectrometry non-target metabolomic analysis to identify differentially expressed proteins and metabolites, respectively. RNA interference (RNAi) using double-stranded RNA (dsRNA) injection was applied to investigate the biological roles of these differentially expressed genes. The RNAi effect was verified by RT-qPCR and western blotting assays. Triglyceride content and ATP levels were measured using the appropriate assay kits, following the manufacturers' instructions. Statistical analyses were conducted with GraphPad7 software using the Student's t-test. RESULTS: Upon depletion of mosquito- and midgut-specific miR-1174, a total of 383 differentially expressed proteins (DEPs) were identified, among which 258 were upregulated and 125 were downregulated. Functional analysis of these DEPs using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment suggested that miR-1174 plays important regulatory roles in amino acid metabolism, nucleotide metabolism, fatty acid metabolism and sugar metabolism pathways. A total of 292 differential metabolites were identified, of which 141 were upregulated and 151 were downregulated. Integrative analysis showed that the associated differential proteins and metabolites were mainly enriched in a variety of metabolic pathways, including glycolysis, citrate cycle, oxidative phosphorylation and amino acid metabolism. Specifically, the gene of one upregulated protein in miR-1174-depleted mosquitoes, purine nucleoside phosphorylase (PNP; AAEL002269), was associated with the purine, pyrimidine and niacin-nicotinamide metabolism pathways. PNP knockdown seriously inhibited blood digestion and ovary development and increased adult mortality. Mechanically, PNP depletion led to a significant downregulation of the vitellogenin gene (Vg); in addition, some important genes in the ecdysone signaling and insulin-like peptide signaling pathways related to ovary development were affected. CONCLUSIONS: This study demonstrates differential accumulation of proteins and metabolites in miR-1174-depleted Ae. aegypti mosquitoes using proteomic and metabolomic techniques. The results provide functional evidence for the role of the upregulated gene PNP in gut physiological activities. Our findings highlight key molecular changes in miR-1174-depleted Ae. aegypti mosquitoes and thus provide a basis and novel insights for increased understanding of the molecular mechanism involved in a lineage-specific miRNA in mosquito vectors.


Asunto(s)
Aedes , MicroARNs , Animales , Femenino , Humanos , Aedes/fisiología , MicroARNs/genética , MicroARNs/metabolismo , Proteoma/metabolismo , Proteómica , Mosquitos Vectores/genética , Insulina/metabolismo , Aminoácidos/metabolismo , Metaboloma
14.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 40(6): 706-710, 2023 Jun 10.
Artículo en Chino | MEDLINE | ID: mdl-37212007

RESUMEN

OBJECTIVE: To explore the clinical feature and genetic etiology of a patient with Craniofacial nasal syndrome (CNFS). METHODS: A patient with CNFS who had presented at the Guiyang Maternal and Child Health Care Hospital on November 13, 2021 was selected as the study subject. Clinical data of the patient were collected. Peripheral venous blood samples were collected from the patient and her parents and subjected to trio-whole exome sequencing (trio-WES). Candidate variants were verified by Sanger sequencing and bioinformatic analysis. RESULTS: The patient, a 15-year-old female, had predominantly featured forehead bulging, hypertelorism, wide nasal dorsum and bifid nasal tip. Genetic testing revealed that she has harbored a heterozygous missense c.473T>C (p.M158T) variant of the EFNB1 gene, which was detected in either of her parents. By bioinformatic analysis, the variant has not been recorded in the HGMD and ClinVar databases, and no population frequency was recorded in the 1000 Genomes, ExAC, gnomAD and Shenzhou Genome Data Cloud databases. As predicted by the REVEL online software, the variant can confer deleterious effects on the gene or its product. Analysis using UGENE software showed the corresponding amino acid to be highly conserved among various species. Analysis with AlphaFold2 software suggested that the variant may affect the 3D structure and function of the Ephrin-B1 protein. Based on the American College of Medical Genetics and Genomics (ACMG) standards and guidelines and recommendation of Clinical Genome Resource (ClinGen), the variant was rated as pathogenic. CONCLUSION: Combining the patient's clinical features and genetic finding, the diagnosis of CNFS was confirmed. The heterozygous c.473T>C (p.M158T) missense variant of the EFNB1 gene probably underlay the disease in this patient. Above finding has provided a basis for the genetic counseling and prenatal diagnosis for her family.


Asunto(s)
Biología Computacional , Efrina-B1 , Humanos , Niño , Femenino , Embarazo , Adolescente , Efrina-B1/genética , China , Familia , Mutación
15.
Infect Drug Resist ; 16: 2141-2145, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37077253

RESUMEN

Chlamydia is a zoonotic pathogen that mainly infects poultry and pet birds. This Gram-negative obligate intracellular parasite also causes human psittacosis, the severity of which varies from mild flu-like symptoms to life-threatening severe pneumonia, including sepsis, acute respiratory distress syndrome, and multiple organ failure. Inhalation of aerosols from contaminated bird excreta through the respiratory tract is the main route of transmission to humans. Here, we present a case of Chlamydia psittaci pneumonia accompanied by lower extremity atherosclerotic occlusive disease. A 48-year-old man was admitted to the emergency department with a four-day history of cough and dyspnea. A detailed history revealed his contact with domestic pigeons. The results of metagenomic next-generation sequencing of bronchoalveolar lavage fluid suggested C. psittaci infection. Antibacterial agents were switched to targeted doxycycline, but in the next week, skin examination revealed acrocyanosis of both lower extremities, and the remarkable palpable purpura progressively worsened. Re-examination of the lower extremity vascular ultrasound suggested left dorsalis pedis artery occlusion and right peroneal vein thrombosis, which resulted in the amputation of both legs. This case is the first report of C. psittaci pneumonia combined with arterioocclusive sclerosis of both lower extremities.

16.
Aquat Toxicol ; 258: 106514, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37019016

RESUMEN

Previous studies have confirmed that bisphenol A (BPA) induced immune toxicity and affected diseases, however, the underlying mechanism remains unknown. In the present study, zebrafish was employed as the model to assess the immunotoxicity and the potential disease risk of BPA exposure. Upon BPA exposure, a series of abnormalities were found, which included the increased oxidative stress, damaged innate and adaptive immune functions and the elevated insulin and blood glucose levels. According to the target prediction and RNA sequencing data of BPA, the differential expression genes were found enriched in immune- and pancreatic cancer-related pathway and process, and the potential role of stat3 in the regulation of these processes was revealed. The key immune- and pancreatic cancer-related genes were selected for further confirmation by RT-qPCR. Based on the changes in the expression levels of these genes, our hypothesis that BPA induced the occurrence of pancreatic cancer by modulating immune responses was further evidenced. Deeper mechanism was further disclosed by molecular dock simulation and survival analysis of key genes, proving that BPA stably bound to STAT3 and IL10 and STAT3 may serve as the target of BPA-inducing pancreatic cancer. These results are of great significance in deepening the molecular mechanism of immunotoxicity induced by BPA and our understanding of the risk assessment of contaminants.


Asunto(s)
Neoplasias Pancreáticas , Contaminantes Químicos del Agua , Animales , Pez Cebra/metabolismo , Contaminantes Químicos del Agua/toxicidad , Estrés Oxidativo
17.
Funct Plant Biol ; 50(4): 314-334, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36872310

RESUMEN

Nitrogen (N) is the main nutrient of plants, and low nitrogen usually affects plant growth and crop yield. The traditional Chinese herbal medicine Dendrobium officinale Kimura et. Migo is a typical low nitrogen-tolerant plant, and its mechanism in response to low nitrogen stress has not previously been reported. In this study, physiological measurements and RNA-Seq analysis were used to analyse the physiological changes and molecular responses of D. officinale under different nitrogen concentrations. The results showed that under low nitrogen levels, the growth, photosynthesis and superoxide dismutase activity were found to be significantly inhibited, while the activities of peroxidase and catalase, the content of polysaccharides and flavonoids significantly increased. Differentially expressed genes (DEGs) analysis showed that nitrogen and carbon metabolisms, transcriptional regulation, antioxidative stress, secondary metabolite synthesis and signal transduction all made a big difference in low nitrogen stress. Therefore, copious polysaccharide accumulation, efficient assimilation and recycling of nitrogen, as well as rich antioxidant components play critical roles. This study is helpful for understanding the response mechanism of D. officinale to low nitrogen levels, which might provide good guidance for practical production of high quality D. officinale .


Asunto(s)
Dendrobium , Dendrobium/genética , Perfilación de la Expresión Génica , Polisacáridos/farmacología , Medicina Tradicional China , Estrés Oxidativo
18.
Biomater Sci ; 11(8): 2678-2692, 2023 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-36877511

RESUMEN

Malignant tumors remain a high-risk disease with high mortality all over the world. Among all the cancer treatments, surgery is the primary approach in the clinical treatment of tumors. However, tumor invasion and metastasis pose challenges for complete tumor resection, accompanied by high recurrence rates and reduced quality of life. Hence, there is an urgent need to explore effective adjuvant therapies to prevent postoperative tumor recurrence and relieve the pain of the patients. Nowadays, the booming local drug delivery systems which can be applied as postoperative adjuvant therapies have aroused people's attention, along with the rapid development in the pharmaceutical and biological materials fields. Hydrogels are a kind of unique carrier with prominent biocompatibility among a variety of biomaterials. Due to their high similarity to human tissues, hydrogels which load drugs/growth factors can prevent rejection reactions and promote wound healing. In addition, hydrogels are able to cover the postoperative site and maintain sustained drug release for the prevention of tumor recurrence. In this review, we survey controlled drug delivery hydrogels such as implantable, injectable and sprayable formulations and summarize the properties required for hydrogels used as postoperative adjuvant therapies. The opportunities and challenges in the design and clinical application of these hydrogels are also elaborated.


Asunto(s)
Hidrogeles , Recurrencia Local de Neoplasia , Humanos , Recurrencia Local de Neoplasia/tratamiento farmacológico , Hidrogeles/uso terapéutico , Calidad de Vida , Sistemas de Liberación de Medicamentos , Materiales Biocompatibles/uso terapéutico
19.
Arch Microbiol ; 205(4): 132, 2023 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-36959350

RESUMEN

Sphingomonas paucimobilis ZJSH1 is an endophytic bacterium isolated from the roots of Dendrobium officinale with the ability to promote plant growth. It was found that the genome of strain ZJSH1 had gene fragment rearrangement compared with the genomes of the other four strains of S. paucimobilis, and the genome was integrated with phage genes. Functional analysis showed that the strain contained colonization-related genes, chemotaxis and invasion. A variety of genes encoding active materials, such as hormones (IAA, SA, ABA and zeaxanthin), phosphate cycle, antioxidant enzymes, and polysaccharides were identified which provide the strain with growth promotion and stress-resistant characteristics. Experiments proved that S. paucimobilis ZJSH1 grew well in media containing 80 g/L sodium chloride, 240 g/L polyethylene glycol and 800 µmol/L Cd2+, indicating its potential for resistance to stresses of salt, drought and cadmium, respectively. S. paucimobilis ZJSH1 is the only endophytic bacterium of this species that has been reported to promote plant growth. The analysis of its genome is conducive to understanding its growth-promoting mechanism and laying a foundation for the development and utilization of this species in the field of agriculture.


Asunto(s)
Dendrobium , Sphingomonas , Dendrobium/genética , Dendrobium/microbiología , Sphingomonas/genética , Cadmio , Antioxidantes
20.
Xenobiotica ; 53(1): 46-59, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36951512

RESUMEN

Delta(9)-tetrahydrocannabinolic acid (THCA) and delta(9)-tetrahydrocannabivarin (THCV) are phytocannabinoids with a similar structure derived from Cannabis sativa and possess a variety of biological activities. However, the relationship between the metabolic characterisation and bioactivity of THCA and THCV remains elusive.To explore the relationship between the metabolism of THCA and THCV and their underlying mechanism of activity, human/mouse liver microsomes and mouse primary hepatocytes were used to compare the metabolic maps between THCA and THCV through comparative metabolomics. A total of 29 metabolites were identified containing 7 previously undescribed THCA metabolites and 10 previously undescribed THCV metabolites. Of these metabolites, THCA was transformed into an active metabolite of delta(9)-tetrahydrocannabinol (THC) in these three systems, while THCV was transformed into THC and CBD.Bioactivity assays indicated that all of these phytocannabinoids exhibited anti-inflammatory activity, but the effects of THCA and THCV were slightly different in macrophages RAW264.7. Prediction of ADMET lab demonstrated that THCV and its metabolites were endowed with the advantage of blood-brain barrier (BBB) penetration compared to THCA.In conclusion, this study highlighted that metabolism plays a critical role in the biological activity of phytocannabinoids.


Asunto(s)
Cannabinoides , Dronabinol , Humanos , Ratones , Animales , Dronabinol/metabolismo , Dronabinol/farmacología , Cromatografía Líquida de Alta Presión
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA