Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
1.
Adv Mater ; : e2403830, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38848548

RESUMEN

Flexoelectricity features the strain gradient-induced mechanoelectric conversion using materials not limited by their crystalline symmetry, but state-of-the-art flexoelectric materials exhibit very small flexoelectric coefficients and are too brittle to withstand large deformations. Here, inspired by the ion polarization in living organisms, this paper reports the giant iontronic flexoelectricity of soft hydrogels where the ion polarization is attributed to the different transfer rates of cations and anions under bending deformations. The flexoelectricity is found to be easily regulated by the types of anion-cation pairs and polymer networks in the hydrogel. A polyacrylamide hydrogel with 1 m NaCl achieves a record-high flexoelectric coefficient of ≈1160 µC m-1, which can even be improved to ≈2340 µC m-1 by synergizing with the effects of ion pairs and extra polycation chains. Furthermore, the hydrogel as flexoelectric materials can withstand larger bending deformations to obtain higher polarization charges owing to its intrinsic low modulus and high elasticity. A soft flexoelectric sensor is then demonstrated for object recognition by robotic hands. The findings greatly broaden the flexoelectricity to soft, biomimetic, and biocompatible materials and applications.

2.
Adv Mater ; : e2402738, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38885961

RESUMEN

The diabetic wound healing is challenging due to the sabotaged delicate balance of immune regulation via an undetermined pathophysiological mechanism, so it is crucial to decipher multicellular signatures underlying diabetic wound healing and seek therapeutic strategies. Here, this work develops a strategy using novel trimethylamine N-oxide (TMAO)-derived zwitterionic hydrogel to promote diabetic wound healing, and explore the multi-cellular ecosystem around zwitterionic hydrogel, mapping out an overview of different cells in the zwitterionic microenvironment by single-cell RNA sequencing. The diverse cellular heterogeneity is revealed, highlighting the critical role of macrophage and neutrophils in managing diabetic wound healing. It is found that polyzwitterionic hydrogel can upregulate Ccl3+ macrophages and downregulate S100a9+ neutrophils and facilitate their interactions compared with polyanionic and polycationic hydrogels, validating the underlying effect of zwitterionic microenvironment on the activation of adaptive immune system. Moreover, zwitterionic hydrogel inhibits the formation of neutrophil extracellular traps (NETs) and promotes angiogenesis, thus improving diabetic wound healing. These findings expand the horizons of the sophisticated orchestration of immune systems in zwitterion-directed diabetic wound repair and uncover new strategies of novel immunoregulatory biomaterials.

3.
Insights Imaging ; 15(1): 136, 2024 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-38853188

RESUMEN

OBJECTIVE: To investigate the value of Dixon magnetic resonance imaging (MRI)-based quantitative parameters of extraocular muscles (EOMs), intraorbital fat (IF), and lacrimal glands (LGs) in staging patients with thyroid-associated ophthalmopathy (TAO). METHODS: Two hundred patients with TAO (211 active and 189 inactive eyes) who underwent Dixon MRI for pretreatment evaluation were retrospectively enrolled and divided into training (169 active and 151 inactive eyes) and validation (42 active and 38 inactive eyes) cohorts. The maximum, mean, and minimum values of the signal intensity ratio (SIR), fat fraction (FF), and water fraction (WF) of EOMs, IF, and LGs were measured and compared between the active and inactive groups in the training cohort. Binary logistic regression analysis, receiver operating characteristic curve analysis, and the Delong test were used for further statistical analyses, as appropriate. RESULTS: Compared with inactive TAOs, active TAOs demonstrated significantly greater EOM-SIRmax, EOM-SIRmean, EOM-SIRmin, IF-SIRmax, IF-SIRmean, LG-SIRmax, LG-SIRmean, EOM-WFmean, EOM-WFmin, IF-WFmax, IF-WFmean, and LG-WFmean and lower EOM-FFmax, EOM-FFmean, IF-FFmean, IF-FFmin, and LG-FFmean values (all p < 0.05). The EOM-SIRmean, LG-SIRmean, and LG-FFmean values were independently associated with active TAO (all p < 0.05). The combination of the EOM-SIRmean, LG-SIRmean, and LG-FFmean values showed better performance than the EOM-SIRmean value alone in staging TAO in both the training (AUC, 0.820 vs 0.793; p = 0.016) and validation (AUC, 0.751 vs 0.733, p = 0.341) cohorts. CONCLUSION: Dixon MRI-based parameters of EOMs, LGs, and IF are useful for differentiating active from inactive TAO. The integration of multiple parameters can further improve staging performance. CRITICAL RELEVANCE STATEMENT: In this study, the authors explored the combined value of quantitative parameters of EOMs, IF, and LGs derived from Dixon MRI in staging TAO patients, which can support the establishment of a proper therapeutic plan. KEY POINTS: The quantitative parameters of EOMs, LGs, and IF are useful for staging TAO. The EOM-SIRmean, LG-SIRmean, and LG-FFmean values were found to independently correlate with active TAO. Joint evaluation of orbital tissue improved the ability to assess TAO activity.

4.
Angew Chem Int Ed Engl ; : e202404769, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38783562

RESUMEN

Elastomeric solid polymer electrolytes (SPEs) are highly promising to address the solid-solid-interface issues of solid-state lithium metal batteries (LMBs), but compromises have to be made to balance the intrinsic trade-offs among their conductive, resilient and recyclable properties. Here, we propose a dual-bond crosslinking strategy for SPEs to realize simultaneously high ionic conductivity, elastic resilience and recyclability. An elastomeric SPE is therefore designed with hemiaminal dynamic covalent networks and Li+-dissociation co-polymer chains, where the -C-N- bond maintains the load-bearing covalent network under stress but is chemically reversible through a non-spontaneous reaction, the weaker intramolecular hydrogen bond is mechanically reversible, and the soft chains endow the rapid ion conduction. With this delicate structure, the optimized SPE elastomer achieves high elastic resilience without loading-unloading hysteresis, outstanding ionic conductivity of 0.2 mS cm-1 (25 °C) and chemical recyclability. Then, exceptional room-temperature performances are obtained for repeated Li plating/stripping tests, and stable cycling of LMBs with either LiFePO4 or 4.3 V-class LiFe0.2Mn0.8PO4 cathode. Furthermore, the recycled and reprocessed SPEs can be circularly reused in LMBs without significant performance degradation. Our findings provide an inspiring design principle for SPEs to address the solid-solid-interface and sustainability challenges of solid-state LMBs.

5.
ACS Appl Mater Interfaces ; 16(14): 17649-17656, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38552212

RESUMEN

Harvesting energy from water droplets has received tremendous attention due to the pursuit of sustainable and green energy resources. The droplet-based electricity generator (DEG) provides an admirable strategy to harvest energy from droplets into electricity. However, most of the DEGs merely generate electricity of alternating current (AC) output rather than direct current (DC) without the utilization of rectifiers, impeding its practical applications in energy storage and power supply. Here, a direct current droplet-based electricity generator (DC-DEG) is developed by the simple configuration of the electrodes. The DC output originates from the dynamical electric double layer (EDL) formed at two electrodes and droplet interfaces where the charging/discharging process of EDL capacitance occurs. Several experiments are exhibited to demonstrate the rationality of the proposed principle. The influence of some factors on the output is investigated for further insight into the DC-DEG device. This work provides a novel strategy to harvest energy from water droplets directly into DC electricity and may expand the application of DEGs in powering electronic devices without the help of rectifiers.

6.
J Agric Food Chem ; 72(11): 5805-5815, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38451212

RESUMEN

Xylan is the main component of hemicellulose. Complete hydrolysis of xylan requires synergistically acting xylanases, such as ß-d-xylosidases. Salt-tolerant ß-d-xylosidases have significant application benefits, but few reports have explored the critical amino acids affecting the salt tolerance of xylosidases. Herein, the site-directed mutation was used to demonstrate that negative electrostatic potentials generated by 19 acidic residues in the loop regions of the structural surface positively correlated with the improved salt tolerance of GH39 ß-d-xylosidase JB13GH39P28. These mutants showed reduced negative potentials on structural surfaces as well as a 13-43% decrease in stability in 3.0-30.0% (w/v) NaCl. Six key residue sites, D201, D259, D297, D377, D395, and D474, were confirmed to influence both the stability and activity of GH39 ß-d-xylosidase. The activity of the GH39 ß-d-xylosidase was found promoting by SO42- and inhibiting by NO3-. Values of Km and Kcat/Km decreased aggravatedly in 30.0% (w/v) NaCl when mutation operated on residues E179 and D182 in the loop regions of the catalytic domain. Taken together, mutation on acidic residues in loop regions from catalytic and noncatalytic domains may cause the deformation of catalytic pocket and aggregation of protein particles then decrease the stability, binding affinity, and catalytic efficiency of the ß-d-xylosidase.


Asunto(s)
Tolerancia a la Sal , Xilosidasas , Xilanos/metabolismo , Cloruro de Sodio , Xilosidasas/química , Especificidad por Sustrato , Concentración de Iones de Hidrógeno
7.
Nat Commun ; 15(1): 1494, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38374305

RESUMEN

Mechanoelectrical energy conversion is a potential solution for the power supply of miniaturized wearable and implantable systems; yet it remains challenging due to limited current output when exploiting low-frequency motions with soft devices. We report a design of a hydrogel generator with mechanoionic current generation amplified by orders of magnitudes with engineered structural and chemical asymmetry. Under compressive loading, relief structures in the hydrogel intensify net ion fluxes induced by deformation gradient, which synergize with asymmetric ion adsorption characteristics of the electrodes and distinct diffusivity of cations and anions in the hydrogel matrix. This engineered mechanoionic process can yield 4 mA (5.5 A m-2) of peak current under cyclic compression of 80 kPa applied at 0.1 Hz, with the transferred charge reaching up to 916 mC m-2 per cycle. The high current output of this miniaturized hydrogel generator is beneficial for the powering of wearable devices, as exemplified by a controlled drug-releasing system for wound healing. The demonstrated mechanisms for amplifying mechanoionic effect will enable further designs for a variety of self-powered biomedical systems.

8.
Mater Horiz ; 11(7): 1760-1768, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38305088

RESUMEN

Personal thermal management (PTM) of fabrics is vital for human health; the ever-changing location of the human body poses a big challenge for fabrics to maintain a favorable metabolic temperature. Herein, a dual-mode thermal management fabric is designed to achieve both cooling and heating functions by regulating simultaneously solar and body radiations. The cooling or heating mode can be exchanged by flipping the fabric without an external energy supply. The passive cooling side consists of an electrospun polyacrylonitrile (PAN) fabric with a hierarchical porous structure, exhibiting high sunlight reflectance (91.42%) and an ∼14 °C temperature decrease under direct sunlight irradiation. The co-existence of nanoscale and microscale pores is proven to be essential for improved cooling performances. The other heating side, coated with an MXene layer, shows high photothermal conversion efficiency (37.5%) and outstanding heating capability outdoors. Furthermore, the contrary mid-infrared emissivity of the two sides (high emissivity of the cooling side while low emissivity of the heating side) leads to the dual-mode passive regulation of body thermal energy. Besides, this fabric demonstrates satisfactory wearability and excellent stability. Our work proposes an energy-saving and cost-effective approach for PTM fabrics potentially suitable for various scenarios (e.g., indoors/outdoors, summer/winter, low/high latitude areas).

9.
Eur Radiol ; 34(8): 5401-5411, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38276980

RESUMEN

OBJECTIVES: To evaluate the combined performance of orbital MRI and intracranial visual pathway diffusion kurtosis imaging (DKI) in diagnosing dysthyroid optic neuropathy (DON). METHODS: We retrospectively enrolled 61 thyroid-associated ophthalmopathy (TAO) patients, including 25 with DON (40 eyes) and 36 without DON (72 eyes). Orbital MRI-based apical muscle index (MI), diameter index (DI) of the optic nerve (ON), area index (AI) of the ON, apparent diffusion coefficient (ADC) and signal intensity ratio (SIR) of the ON, DKI-based kurtosis fractional anisotropy (KFA) and mean kurtosis (MK) of the optic tract (OT), optic radiation (OR), and Brodmann areas (BAs) 17, 18, and 19 were measured and compared between groups. The diagnostic performances of models were evaluated using receiver operating characteristic curve analyses and compared using the DeLong test. RESULTS: TAO patients with DON had significantly higher apical MI, apical AI, and SIR of the ON, but significantly lower ADC of the ON than those without DON (p < 0.05). Meanwhile, the DON group exhibited significantly lower KFA across the OT, OR, BA17, BA18, and BA19 and lower MK at the OT and OR than the non-DON group (p < 0.05). The model integrating orbital MRI and intracranial visual pathway DKI parameters performed the best in diagnosing DON (AUC = 0.926), with optimal diagnostic sensitivity (80%) and specificity (94.4%), followed by orbital MRI combination (AUC = 0.890), and then intracranial visual pathway DKI combination (AUC = 0.832). CONCLUSION: Orbital MRI and intracranial visual pathway DKI can both assist in diagnosing DON. Combining orbital and intracranial imaging parameters could further optimize diagnostic efficiency. CLINICAL RELEVANCE STATEMENT: The novel finding could bring novel insights into the precise diagnosis and treatment of dysthyroid optic neuropathy, accordingly, contributing to the improvement of the patients' prognosis and quality of life in the future. KEY POINTS: • Orbital MRI and intracranial visual pathway diffusion kurtosis imaging can both assist in diagnosing dysthyroid optic neuropathy. • Combining orbital MRI and intracranial visual pathway diffusion kurtosis imaging optimized the diagnostic efficiency of dysthyroid optic neuropathy.


Asunto(s)
Oftalmopatía de Graves , Enfermedades del Nervio Óptico , Vías Visuales , Humanos , Femenino , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Oftalmopatía de Graves/diagnóstico por imagen , Enfermedades del Nervio Óptico/diagnóstico por imagen , Vías Visuales/diagnóstico por imagen , Adulto , Imagen por Resonancia Magnética/métodos , Imagen de Difusión Tensora/métodos , Sensibilidad y Especificidad , Nervio Óptico/diagnóstico por imagen , Anciano , Órbita/diagnóstico por imagen
10.
Adv Sci (Weinh) ; 11(12): e2307667, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38239041

RESUMEN

The hydrogen evolution reaction (HER) and Zn dendrites growth are two entangled detrimental effects hindering the application of aqueous Zn batteries. The alloying strategy is studied to be a convenient avenue to stabilize Zn anodes, but there still lacks global understanding when selecting reliable alloy elements. Herein, it is proposed to evaluate the Zn alloying elements in a holistic way by considering their effects on HER, zincphilicity, price, and environmental-friendliness. Screening selection sequence is established through the theoretical evaluation of 17 common alloying elements according to their effects on hydrogen evolution and Zn nucleation thermodynamics. Two alloy electrodes with opposite predicted effects are prepared for experimental demonstration, i.e., HER-inhibiting Bi and HER-exacerbating Ni. Impressively, the optimum ZnBi alloy anode exhibits one order of magnitude lower hydrogen evolution rate than that of the pure Zn, leading to an ultra-long plating/stripping cycling life for more than 11 000 cycles at a high current density of 20 mA cm-2 and 81% capacity retention for 170 cycles in a Zn-V2O5 pouch cell. The study not only proposes a holistic alloy selection principle for Zn anode but also identifies a practically effective alloy element.

11.
J Clin Endocrinol Metab ; 109(3): 649-658, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-37864850

RESUMEN

OBJECTIVE: To investigate the brain structural and functional alterations in patients with thyroid-associated ophthalmopathy (TAO) before and after glucocorticoid therapy, using voxel-based morphometry (VBM) as well as resting-state functional magnetic resonance imaging (MRI) with amplitude of low-frequency fluctuation (ALFF) and regional homogeneity (ReHo). METHODS: Between 2019 and 2022, 32 patients with TAO and 23 healthy controls underwent pre-therapy MRI in Nanjing, China. Intravenous glucocorticoid therapy was administered to all patients. At 3 months after end of therapy, 26 patients were available for rescanned MRI. VBM, ALFF, and ReHo were used to evaluate the brain structural and functional differences. RESULTS: Before therapy, TAO patients showed significantly decreased gray matter volume (GMV) in the left orbital part of superior frontal gyrus (ORBsup) and medial superior frontal gyrus (SFGmed) than healthy controls. Patients had higher ALFF values in bilateral gyrus rectus and olfactory cortex and lower values in bilateral cuneus. Patients also showed decreased ReHo values in bilateral lingual gyrus. After therapy, increased GMV in the left anterior cingulate gyrus and SFGmed, increased ALFF values in bilateral cuneus and superior occipital gyrus, and increased ReHo values in bilateral SFGmed were found in TAO patients compared to the pre-therapy cohort. Compared to controls, decreased GMV in left ORBsup was observed in post-therapy TAO patients. CONCLUSION: Our results indicated that TAO might cause functional and structural deficits in the visual and emotional regions of the brain, with recovery in the former and partial restoration in the latter after effective glucocorticoid therapy. These findings may lead to deeper understanding of the pathophysiological mechanism behind TAO.


Asunto(s)
Glucocorticoides , Oftalmopatía de Graves , Humanos , Glucocorticoides/uso terapéutico , Oftalmopatía de Graves/diagnóstico por imagen , Oftalmopatía de Graves/tratamiento farmacológico , Oftalmopatía de Graves/patología , Encéfalo/patología , Sustancia Gris/diagnóstico por imagen , Sustancia Gris/patología , Mapeo Encefálico/métodos , Imagen por Resonancia Magnética/métodos
12.
Front Endocrinol (Lausanne) ; 14: 1268279, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38034014

RESUMEN

Background: To investigate the whole-brain iron deposition alternations in patients with thyroid-associated ophthalmopathy (TAO) using quantitative susceptibility mapping (QSM). Methods: Forty-eight patients with TAO and 33 healthy controls (HCs) were enrolled. All participants underwent brain magnetic resonance imaging scans and clinical scale assessments. QSM values were calculated and compared between TAO and HCs groups using a voxel-based analysis. A support vector machine (SVM) analysis was performed to evaluate the performance of QSM values in differentiating patients with TAO from HCs. Results: Compared with HCs, patients with TAO showed significantly increased QSM values in the bilateral caudate nucleus (CN), left thalamus (TH), left cuneus, left precuneus, right insula and right middle frontal gyrus. In TAO group, QSM values in left TH were positively correlated with Hamilton Depression Rating Scale (HDRS) scores (r = 0.414, p = 0.005). The QSM values in right CN were negatively correlated with Montreal Cognitive Assessment (MoCA) scores (r = -0.342, p = 0.021). Besides that, a nearly negative correlation was found between QSM values in left CN and MoCA scores (r = -0.286, p = 0.057). The SVM model showed a good performance in distinguishing patients with TAO from the HCs (area under the curve, 0.958; average accuracy, 90.1%). Conclusion: Patients with TAO had significantly increased iron deposition in brain regions corresponding to known visual, emotional and cognitive deficits. QSM values could serve as potential neuroimaging markers of TAO.


Asunto(s)
Disfunción Cognitiva , Oftalmopatía de Graves , Humanos , Oftalmopatía de Graves/diagnóstico por imagen , Hierro , Encéfalo/diagnóstico por imagen , Mapeo Encefálico
13.
Hum Brain Mapp ; 44(16): 5346-5356, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37515416

RESUMEN

Although previous neuroimaging evidence has confirmed the brain functional disturbances in thyroid-associated ophthalmopathy (TAO), the dynamic characteristics of brain activity and functional connectivity (FC) in TAO were rarely concerned. The present study aims to investigate the alterations of temporal variability of brain activity and FC in TAO using resting-state functional magnetic resonance imaging (rs-fMRI). Forty-seven TAO patients and 30 age-, gender-, education-, and handedness-matched healthy controls (HCs) were enrolled and underwent rs-fMRI scanning. The dynamic amplitude of low-frequency fluctuation (dALFF) was first calculated using a sliding window approach to characterize the temporal variability of brain activity. Based on the dALFF results, seed-based dynamic functional connectivity (dFC) analysis was performed to identify the temporal variability of efficient communication between brain regions in TAO. Additionally, correlations between dALFF and dFC and the clinical indicators were analyzed. Compared with HCs, TAO patients displayed decreased dALFF in the left superior occipital gyrus (SOG) and cuneus (CUN), while showing increased dALFF in the left triangular part of inferior frontal gyrus (IFGtriang), insula (INS), orbital part of inferior frontal gyrus (ORBinf), superior temporal gyrus (STG) and temporal pole of superior temporal gyrus (TPOsup). Furthermore, TAO patients exhibited decreased dFC between the left STG and the right middle occipital gyrus (MOG), as well as decreased dFC between the left TPOsup and the right calcarine fissure and surrounding cortex (CAL) and MOG. Correlation analyses showed that the altered dALFF in the left SOG/CUN was positively related to visual acuity (r = .409, p = .004), as well as the score of QoL for visual functioning (r = .375, p = .009). TAO patients developed abnormal temporal variability of brain activity in areas related to vision, emotion, and cognition, as well as reduced temporal variability of FC associated with vision deficits. These findings provided additional insights into the neurobiological mechanisms of TAO.


Asunto(s)
Mapeo Encefálico , Oftalmopatía de Graves , Humanos , Mapeo Encefálico/métodos , Oftalmopatía de Graves/diagnóstico por imagen , Calidad de Vida , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen
14.
Research (Wash D C) ; 6: 0154, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37250953

RESUMEN

Regular exercise paves the way to a healthy life. However, conventional sports events are susceptible to weather conditions. Current motion sensors for home-based sports are mainly limited by operation power consumption, single-direction sensitivity, or inferior data analysis. Herein, by leveraging the 3-dimensional printing technique and triboelectric effect, a wearable self-powered multidimensional motion sensor has been developed to detect both the vertical and planar movement trajectory. By integrating with a belt, this sensor could be used to identify some low degree of freedom motions, e.g., waist or gait motion, with a high accuracy of 93.8%. Furthermore, when wearing the sensor at the ankle position, signals generated from shank motions that contain more abundant information could also be effectively collected. By means of a deep learning algorithm, the kicking direction and force could be precisely differentiated with an accuracy of 97.5%. Toward practical application, a virtual reality-enabled fitness game and a shooting game were successfully demonstrated. This work is believed to open up new insights for the development of future household sports or rehabilitation.

15.
Adv Mater ; 35(21): e2300073, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36861496

RESUMEN

Nontoxic and safe aqueous Zn batteries are largely restricted by the detrimental dendrite growth and hydrogen evolution of Zn metal anode. The (002)-textured Zn electrodeposition, demonstrated as an effective approach for solving these issues, is nevertheless achieved mainly by epitaxial or hetero-epitaxial deposition of Zn on pre-textured substrates. Herein, the electrodeposition of (002)-textured and compact Zn on textureless substrates (commercial Zn, Cu, and Ti foils) at a medium-high galvanostatic current density is reported. According to the systematic investigations on Zn nucleation and growth behaviors, this is ascribed to two reasons: i) the promoted nonepitaxial nucleation of fine horizontal (002) nuclei at increased overpotential and ii) the competitive growth advantages of (002)-orientated nuclei. The resulting freestanding (002)-textured Zn film exhibits significantly suppressed hydrogen evolution and prolonged Zn plating-stripping cycling life, achieving over 2100 mAh cm-2 cumulative capacity under a current density of 10 mA cm-2 and a high depth of discharge (DOD) of 45.5%. Therefore, this study provides both fundamental and practical insights into long-life Zn metal batteries.

16.
Natl Sci Rev ; 10(1): nwac170, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36684511

RESUMEN

Smart wearable technologies are augmenting human bodies beyond our biological capabilities in communication, healthcare and recreation. Energy supply and information acquisition are essential for wearable electronics, whereas the increasing demands in multifunction are raising the requirements for energy and sensor devices. The triboelectric nanogenerator (TENG), proven to be able to convert various mechanical energies into electricity, can fulfill either of these two functions and therefore has drawn extensive attention and research efforts worldwide. The everyday life of a human body produces considerable mechanical energies and, in the meantime, the human body communicates mainly through mechanical signals, such as sound, body gestures and muscle movements. Therefore, the TENG has been intensively studied to serve as either wearable sources or wearable self-powered sensors. Herein, the recent finding on the fundamental understanding of TENGs is revisited briefly, followed by a summary of recent advancements in TENG-based wearable power sources and self-powered sensors. The challenges and prospects of this area are given as well.

17.
J Colloid Interface Sci ; 635: 254-264, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36587577

RESUMEN

Doping engineering in nanostructured carbon materials is an effective approach to modify heteroatom species and surface electronic structures. Herein, an advanced electrode material based on a honeycomb-like porous carbon matrix with tunable N-doped configurations is prepared via 4,4'-bipyridine (4,4'-bpy)-assisted pyrolysis of SiO2@ZIF-8 templates and subsequent etching treatment. Interestingly, the amounts of pyridinic-N and graphitic-N can be controlled by rationally varying the content of 4,4'-bpy which acts as the N source in the pyrolysis process. Both experimental results and density functional theory calculations have revealed that synergistically with 3D interconnected porous architecture, pyridinic-N and graphitic-N have different effects on the electrochemical performances in aqueous and ionic liquid gel electrolytes for symmetric supercapacitors. Highly exposed pyridinic-N endows the carbon electrode with a strengthened pseudocapacitance contribution manifested as a high specific capacitance of 436.1 F g-1 and exceptional stability of almost 100% capacitance retention after 5000 cycles at 10 A g-1 in the KOH/polyvinyl alcohol (PVA) electrolyte. By contrast, graphitic-N is propitious for reinforced electrical double-layer capacitance contribution, reflected by a maximum energy density of 125.4 Wh kg-1 in the 1-ethyl-3-methylimidazolium tetrafluoroborate/poly(vinylidene fluoride-co-hexafluoropropylene) (EMIMBF4/PVDF-HFP) electrolyte. This work offers an in-depth insight into the understanding of the energy storage mechanism of N-rich carbon electrodes in different electrolyte media.

18.
ACS Appl Mater Interfaces ; 14(37): 41988-41996, 2022 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-36074985

RESUMEN

Rechargeable Zn batteries are widely studied as aqueous, safe, and environmentally friendly alternatives to Li-ion batteries. The 3D porous Zn anode has been extensively reported for suppressing Zn dendrite growth and accelerating the electrode kinetics. However, we demonstrate herein that the undesirable hydrogen evolution reaction (HER) is also exacerbated for porous Zn electrode. Therefore, a polytetrafluoroethylene (PTFE) coating is further applied on the porous Zn serving as the artificial solid-electrolyte interphase (SEI), which is demonstrated to effectively inhibit the hydrogen evolution and maintain the Zn plating kinetics. By utilizing the synergistic effects of the porous morphology and artificial SEI layer, better performances are obtained over porous Zn or bare Zn foil, including dendrite-free Zn plating/stripping up to 2000 h at 2 mA cm-2 and extended cycling in the Zn||V2O5 cell. This work suggests two complementary strategies for achieving simultaneously dendrite-free and side-reaction-suppressed Zn batteries.

19.
Nano Lett ; 22(16): 6637-6646, 2022 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-35931465

RESUMEN

Metal film-based stretchable strain sensors hold great promise for applications in various domains, which require superior sensitivity-stretchability-cyclic stability synergy. However, the sensitivity-stretchability trade-off has been a long-standing dilemma and the metal film-based strain sensors usually suffer from weak cyclic durability, both of which significantly limit their practical applications. Here, we propose an extremely facile, low-cost and spontaneous strategy that incorporates topological gradients in metal film-based strain sensors, composed of intrinsic (grain size and interface) and extrinsic (film thickness and wrinkle) microstructures. The topological gradient strain sensor exhibits an ultrawide stretchability of 100% while simultaneously maintaining a high sensitivity at an optimal topological gradient of 4.5, due to the topological gradients-induced multistage film cracking. Additionally, it possesses a decent cyclic stability for >10 000 cycles between 0 and 40% strain enabled by the gradient-mixed metal/elastomer interfaces. It can monitor the full-range human activities from subtle pulse signals to vigorous joint movements.


Asunto(s)
Dispositivos Electrónicos Vestibles , Elastómeros/química , Humanos , Metales , Monitoreo Fisiológico
20.
Adv Sci (Weinh) ; 9(25): e2202489, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35758560

RESUMEN

The kernmantle construction, a kind of braiding structure that is characterized by the kern absorbing most of the stress and the mantle protecting the kern, is widely employed in the field of loading and rescue services, but rarely in flexible electronics. Here, a novel kernmantle electronic braid (E-braid) for high-impact sports monitoring, is proposed. The as-fabricated E-braids not only demonstrate high strength (31 Mpa), customized elasticity, and nice machine washability (>500 washes) but also exhibit excellent electrical stability (>200 000 cycles) during stretching. For demonstration, the E-braids are mounted to different parts of the trampoline for athletes' locomotor behavior monitoring. Furthermore, the E-braids are proved to act as multifarious intelligent sports gear or wearable equipment such as electronic jump rope and respiration monitoring belt. This study expands the kernmantle structure to soft flexible electronics and then accelerates the development of quantitative analysis in modern sports industry and athletes' healthcare.


Asunto(s)
Electrónica , Deportes , Atletas , Elasticidad , Humanos , Monitoreo Fisiológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA