Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Animals (Basel) ; 14(10)2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38791644

RESUMEN

Arylalkylamine N-acetyltransferase (AANAT) is a crucial rate-limiting enzyme in the synthesis of melatonin. AANAT has been confirmed to be independently duplicated and inactivated in different animal taxa in order to adapt to the environment. However, the evolutionary forces associated with having a single copy of AANAT remain unclear. The greater horseshoe bat has a single copy of AANAT but exhibits different hibernation rhythms in various populations. We analyzed the adaptive evolution at the gene and protein levels of AANAT from three distinct genetic lineages in China: northeast (NE), central east (CE), and southwest (SW). The results revealed greater genetic diversity in the AANAT loci of the NE and CE lineage populations that have longer hibernation times, and there were two positive selection loci. The catalytic capacity of AANAT in the Liaoning population that underwent positive selection was significantly higher than that of the Yunnan population (p < 0.05). This difference may be related to the lower proportion of α helix and the variation in two interface residues. The adaptive evolution of AANAT was significantly correlated with climate and environment (p < 0.05). After controlling for geographical factors (latitude and altitude), the evolution of AANAT by the negative temperature factor was represented by the monthly mean temperature (r = -0.6, p < 0.05). The results identified the gene level variation, functional adaptation, and evolutionary driving factors of AANAT, provide an important foundation for further understanding the adaptive evolution of the single copy of AANAT in pteropods, and may offer evidence for adaptive hibernation rhythms in bats.

2.
Ecol Evol ; 13(4): e9944, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37082328

RESUMEN

The lacked-teeth pygmy weasel, Mustela aistoodonnivalis Wu & Kao, 1991, was originally described as being from Taibai Mountain and Zhashui county, Shaanxi, China. Subsequently, it was considered a subspecies or synonym of Mustela nivalis. In a faunal survey of northwestern Sichuan, eight specimens of M. aistoodonnivalis were collected. A molecular phylogenetic analysis of one mitochondrial and six nuclear genes clustered the specimens as a distinct clade and not with M. nivalis. Morphologically, the lack of the second lower molar differentiated them from M. nivalis, and genetic distances were typical of discrete species. These analyses confirmed that M. aistoodonnivalis is an independent species in the genus Mustela.

4.
Ecol Evol ; 11(1): 376-389, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33437436

RESUMEN

Diet analysis of potential small mammals pest species is important for understanding feeding ecology and evaluating their impact on crops and stored foods. Chinese mole shrew (Anourosorex squamipes), distributed in Southwest China, has previously been reported as a farmland pest. Effective population management of this species requires a better understanding of its diet, which can be difficult to determine with high taxonomic resolution using conventional microhistological methods. In this study, we used two DNA metabarcoding assays to identify 38 animal species and 65 plant genera from shrew stomach contents, which suggest that A. squamipes is an omnivorous generalist. Earthworms are the most prevalent (>90%) and abundant (>80%) food items in the diverse diet of A. squamipes. Species of the Fabaceae (frequency of occurrence [FO]: 88%; such as peanuts) and Poaceae (FO: 71%; such as rice) families were the most common plant foods identified in the diet of A. squamipes. Additionally, we found a seasonal decrease in the diversity and abundance of invertebrate foods from spring and summer to winter. Chinese mole shrew has a diverse and flexible diet throughout the year to adapt to seasonal variations in food availability, contributing to its survival even when food resources are limited. This study provides a higher resolution identification of the diet of A. squamipes than has been previously described and is valuable for understanding shrew feeding ecology as well as evaluating possible species impacts on crops.

5.
BMC Evol Biol ; 20(1): 29, 2020 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-32059644

RESUMEN

BACKGROUND: Crocidura, the most speciose mammalian genus, occurs across much of Asia, Europe and Africa. The taxonomy of Chinese representatives has been studied primarily based on cursory morphological comparisons and their molecular phylogenetic analyses remain unexplored. In order to understand the phylogeny of this group in China, we estimated the first multilocus phylogeny and conducted species delimitation, including taxon sampling throughout their distribution range. RESULTS: We obtained one mitochondrial gene (cytb) (~ 1, 134 bp) and three nuclear genes (ApoB, BRCA1, RAG1) (~ 2, 170 bp) for 132 samples from 57 localities. Molecular analyses identified at least 14 putative species that occur within two major well-supported groups in China. Polyphyletic C. wuchihensis appears to be composed of two putative species. Two subspecies, C. rapax rapax and C. rapax kurodai should be elevated to full species status. A phylogenetic tree based on mitochondrial gene from Asian Crocidura species showed that the C. rapax rapax is embedded within C. attenuata, making the latter a paraphyletic group. Three strongly supported undescribed species (C. sp.1, C. sp.2 and C. sp.3) are revealed from Zada County of Tibet (Western China), Hongjiang County of Hunan Province (Central China) and Dongyang County of Zhejiang Province (Eastern China), Motuo County of Tibet, respectively. The divergence time estimation suggested that China's Crocidura species began to diversify during the late Pliocene (3.66 Ma) and the Early Pleistocene (2.29 Ma), followed by a series of diversifications through the Pleistocene. CONCLUSIONS: The cryptic diversity found in this study indicated that the number of species is strongly underestimated under the current taxonomy. We propose that the three undescribed species should be evaluated using extensive taxon sampling and comprehensive morphological and morphometric approaches. Climate change since the late Pliocene and the uplift of the Qinghai-Tibet Plateau may result in the diversification and speciation of China's Crocidura species. In short, the underestimated diversity underlines the need for a taxonomic revision of Chinese Crocidura species.


Asunto(s)
Variación Genética , Musarañas/clasificación , Musarañas/genética , África , Animales , Asia , China , ADN Mitocondrial/genética , Europa (Continente) , Genes Mitocondriales , Tipificación de Secuencias Multilocus/métodos , Tipificación de Secuencias Multilocus/veterinaria , Filogenia , Filogeografía , Tibet
6.
Mitochondrial DNA B Resour ; 4(2): 2553-2554, 2019 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-33365623

RESUMEN

The Smith's shrew (Chodsigoa smithii) belongs to subfamily Soricinae, which is an endemic shrew to China. In this study, we obtained the complete mitochondrial genome of the C. smithii. This mitogenome is a circular molecule with 17,108 bp in length, containing 13 protein-coding genes, 22 transfer RNA genes, two ribosome RNA genes, one light strand replication origin (OL), one non-coding region, and with a base composition of 32.5% A, 29.3% T, 24.8% C, and 13.4% G. The nucleotide sequence data of 13 protein-coding genes of C. smithii and other 19 Soricomorpha species were used for phylogenetic analyses. Phylogenetic tree shows that Soricinae includes two major phylogenetic lineages. Chodsigoa smithii is located as a basal position in tribe Nectogalini.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...