Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Asunto principal
Intervalo de año de publicación
1.
Nanomaterials (Basel) ; 13(11)2023 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-37299707

RESUMEN

3D printing technology has been used to directly produce various actual products, ranging from engines and medicines to toys, especially due to its advantage in producing items of complicated, porous structures, which are inherently difficult to clean. Here, we apply micro-/nano-bubble technology to the removal of oil contaminants from 3D-printed polymeric products. Micro-/nano-bubbles show promise in the enhancement of cleaning performance with or without ultrasound, which is attributed to their large specific surface area enhancing the adhesion sites of contaminants, and their high Zeta potential which attracts contaminant particles. Additionally, bubbles produce tiny jets and shock waves at their rupture, driven by coupled ultrasound, which can remove sticky contaminants from 3D-printed products. As an effective, efficient, and environmentally friendly cleaning method, micro-/nano-bubbles can be used in a range of applications.

2.
Sci Rep ; 13(1): 933, 2023 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-36650226

RESUMEN

Aiming at the problem of large deformation and difficulty in surrounding rock control of the top coal roadway in thick seam, theoretical analysis, theoretical analysis, numerical simulation, orthogonal matrix analysis and other methods were used to study the roof deformation and support parameter optimization of the top coal roadway in thick seam. Firstly, the structural model and roof mechanical model of the top coal roadway in thick seam were established, and the deformation coefficient TK was defined based on the relationship between curvature radius and bending moment, maximum bending moment and ultimate tensile strength of beam. According to the ratio of deformation rate between TK and beam to determine the roof deformation mode of top coal roadway, the discriminant conditions of roadway roof stability under two deformation conditions are obtained. Due to the characteristics of serious coal-rock fragmentation, large roof deformation, and integration of top coal and side coal. Therefore, the combined support method of "high prestressed long and short anchor cables" is proposed by double arch bearing structure control technology. Finally, based on the orthogonal matrix analysis method of supporting parameters optimization of the top coal roadway in thick seam, the analysis amount of supporting scheme is significantly reduced, the comprehensive evaluation of multi-factor and multi-supporting effect of roadway support is realized, and the optimal supporting scheme is obtained. Compared with the surrounding rock of the roadway without support, the deformation of the roof is reduced by 27.27%, the deformation of the two sides is reduced by 45.24%, and the tensile failure volume is reduced by 54.66%. The top coal roadway in thick seam has been effectively controlled, which provides guarantee for high yield and high efficiency of the mine.

3.
ACS Omega ; 7(50): 46682-46692, 2022 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-36570312

RESUMEN

Aiming at the problems of large deformation and difficult control of the mining roadway water drenching in a thick coal seam, the principle of double-arch zoning cooperative surrounding rock control is studied by using the combined method of theoretical analysis, numerical simulation, and industrial experiment. The water-rock interaction of the surrounding rock of water-drenching roadway is proposed, taking into account the damage to the mechanical parameters of the surrounding rock caused by soaking water. The water-mechanical-damage coupling model for surrounding rock of a coal seam roadway is constructed, and is numerically solved by the code development using the FISH language. The principle of "high prestressed bolt-cable-mesh" zone coordinated control is revealed, and the existence of a compressive stress arch is verified by FLAC3D software. The three support schemes were compared and analyzed by numerical simulation software. We affirmed the bolt length of 2400 mm, spacing of 0.9 m, row spacing of 1 m, cable length of 7300 mm, and arrangement 3-2-3 as the optimal support scheme and applied this scheme in the Zhangcun Coal Mine. The results show that the maximum deformation of the roadway roof is 142 mm, and the ultimate convergence of the two sides is 83 mm. The surrounding rock has been effectively controlled.

4.
Sci Rep ; 12(1): 20017, 2022 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-36414697

RESUMEN

Deformation and failure of the roadway surrounding rock under dynamic disturbance were explored, which is essential for the control of the surrounding rock. The impact of dynamic disturbance on the deformation and failure of the roadway surrounding rock was studied from a single factor perspective using numerical simulation software. The disturbance intensity, frequency, and time were determined to affect the deformation and plastic zone of the surrounding rock. Firstly, a multi-factor integrated study was achieved using an orthogonal experimental design, and the impact of the three factors on the deformation and plastic zone of the surrounding rock were studied by applying mean value and extreme difference. The results show that the degree of influence of deformation of the roof is time > intensity > frequency in order. The impact of the plastic zone volume is intensity > frequency > time in order. Finally, a multivariate regression model was established using multiple regression analysis. The P = 0 < 0.05 for the regression model is obtained by variance analysis, and the equation regression is significant, which can effectively predict the deformation and failure of the surrounding rock under dynamic disturbance.


Asunto(s)
Plásticos , Simulación por Computador
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...