Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Biomedicines ; 10(11)2022 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-36359285

RESUMEN

Endothelin-1 (ET-1) is a vasoactive and profibrotic peptide that plays a pivotal role in diseases such as systemic sclerosis (SSc) and pulmonary arterial hypertension (PAH), by inducing fibrosis and vascular remodeling. Such effects may be sustained by the induction of aldosterone production and reactive oxygen species (ROS). We have used fibroblasts obtained from skin of healthy donors and SSc patients and commercial fibroblasts from lung to evaluate whether ET-1 is able to stimulate ROS production directly or indirectly through aldosterone induction. We found that ET-1 receptors are present in all types of fibroblasts analyzed, whereas the expression of mineralocorticoid receptor (MCR) is lower in dermal fibroblasts from healthy donors (HDFs) compared to fibroblasts derived from lung (HPFs) or from skin of SSc patients (SScHDFs). ET-1 induces ROS production in HDFs and SScHDFs after 24 h of incubation involving its receptor B (ETB), whereas aldosterone exerts its effects after 40 min of incubation. Moreover, ROS production was inhibited by the pre-incubation of cells with MCR inhibitor. Our results indicate that ET-1 induces ROS indirectly through aldosterone production suggesting that aldosterone may play a pivotal role in the pathogenesis of SSc and PAH.

2.
Front Immunol ; 12: 753400, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34675934

RESUMEN

Rheumatoid arthritis (RA) is a systemic autoimmune disease characterized by chronic inflammation mainly affecting the joints leading to cartilage and bone destruction. The definition of seropositive or seronegative RA is based on the presence or absence of rheumatoid factor (RF) and anti-citrullinated peptide antibodies (ACPAs). Other autoantibodies have been identified in the last decade such as antibodies directed against carbamylated antigens, peptidyl-arginine deiminase type 4 and v-Raf murine sarcoma viral oncogene homologue B. In order to identify relevant autoantigens, we screened a random peptide library (RPL) with pooled IgGs obtained from 50 patients with seronegative RA. Patients' sera were then used in an ELISA test to identify the most frequently recognized peptide among those obtained by screening the RPL. Sera from age- and sex-matched healthy subjects were used as controls. We identified a specific peptide (RA-peptide) recognized by RA patients' sera, but not by healthy subjects or by patients with other immune-mediated diseases. The majority of sera from seronegative and seropositive RA patients (73.8% and 63.6% respectively) contained IgG antibodies directed against the RA-peptide. Interestingly, this peptide shares homology with some self-antigens, such as Protein-tyrosine kinase 2 beta, B cell scaffold protein, Liprin-alfa1 and Cytotoxic T lymphocyte protein 4. Affinity purified anti-RA-peptide antibodies were able to cross react with these autoantigens. In conclusion, we identified a peptide that is recognized by seropositive and, most importantly, by seronegative RA patients' sera, but not by healthy subjects, conferring to this epitope a high degree of specificity. This peptide shares also homology with other autoantigens which can be recognized by autoantibodies present in seronegative RA sera. These newly identified autoantibodies, although present also in a percentage of seropositive RA patients, may be considered as novel serum biomarkers for seronegative RA, which lacks the presence of RF and/or ACPAs.


Asunto(s)
Artritis Reumatoide/sangre , Autoanticuerpos/sangre , Autoantígenos/inmunología , Biblioteca de Péptidos , Péptidos/sangre , Anciano , Anticuerpos Antiproteína Citrulinada/sangre , Especificidad de Anticuerpos , Artritis Reumatoide/tratamiento farmacológico , Biomarcadores , Línea Celular Tumoral , Células Cultivadas , Ensayo de Inmunoadsorción Enzimática , Epítopos/inmunología , Femenino , Humanos , Inmunoglobulina G/sangre , Inmunosupresores/uso terapéutico , Subgrupos Linfocitarios/inmunología , Masculino , Persona de Mediana Edad , Péptidos/química , Factor Reumatoide/sangre , Sensibilidad y Especificidad , Homología de Secuencia de Aminoácido , Sinoviocitos
3.
Autoimmun Rev ; 19(9): 102616, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32682985

RESUMEN

Immune Thrombocitopenic Purpura (ITP) is an autoimmune disease characterized by antibody-mediated platelet destruction and variable reduced platelet production. Besides antibody-mediated platelet destruction, new pathogenic mechanisms have been reported to be involved in reducing platelet count. Among these, desialylation is one of the most recent and innovative mechanisms that has been found to be implied, at least in part, in non-antibody mediated platelet clearance. Common Variable Immunodeficiency (CVID) is the most common Primary Immunodeficiency seen in clinical practice. About 25-30% of CVID patients are affected by autoimmune manifestation, among which ITP is the most common. Little is know about pathophysiological mechanisms that lead to ITP in CVID. Given the poor antibody production typical of CVID patients, we aimed at verifying whether platelet desialylation could be responsible for CVID associated thrombocytopenia. According to our results, we may suggest that in CVID patients, ITP is due to a decreased bone marrow platelets production, rather than an increased peripheral platelet destruction, which is more common in patients with primary ITP. An increased platelet desialylation does not appear to be implicated in the thrombocytopenia secondary to CVID, while it is implicated in the pathogenesis of primary ITP. Nevertheless an intriguing aspect has emerged from this study: regardless the presence of thrombocytopenia, the majority of CVID patients present a double platelet population as far as desialylation concerns, whilst no one of the healthy donors and of the patients with primary ITP shows a similar characteristic.


Asunto(s)
Inmunodeficiencia Variable Común , Púrpura Trombocitopénica Idiopática , Anticuerpos , Plaquetas/patología , Inmunodeficiencia Variable Común/patología , Inmunodeficiencia Variable Común/fisiopatología , Humanos , Púrpura Trombocitopénica Idiopática/patología , Púrpura Trombocitopénica Idiopática/fisiopatología
4.
J Clin Med ; 9(6)2020 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-32532082

RESUMEN

Fibromyalgia is a chronic disorder characterized by widespread pain and by several non-pain symptoms. Autoimmunity, small fiber neuropathy and neuroinflammation have been suggested to be involved in the pathogenesis of the disease. We have investigated the gene expression profile in peripheral blood mononuclear cells obtained from ten patients and ten healthy subjects. Of the 545,500 transcripts analyzed, 1673 resulted modulated in fibromyalgic patients. The majority of these genes are involved in biological processes and pathways linked to the clinical manifestations of the disease. Moreover, genes involved in immunological pathways connected to interleukin-17 and to Type I interferon signatures were also modulated, suggesting that autoimmunity plays a role in the disease. We then aimed at identifying differentially expressed Long non-coding RNAs (LncRNAs) functionally connected to modulated genes both directly and via microRNA targeting. Only two LncRNAs of the 298 found modulated in patients, were able to target the most highly connected genes in the fibromyalgia interactome, suggesting their involvement in crucial gene regulation. Our gene expression data were confirmed by real time PCR, by autoantibody testing, detection of soluble mediators and Th-17 polarization in a validation cohort of 50 patients. Our results indicate that genetic and epigenetic mechanisms as well as autoimmunity play a pivotal role in the pathogenesis of fibromyalgia.

5.
ACR Open Rheumatol ; 1(10): 603-613, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31872181

RESUMEN

OBJECTIVE: To investigate the gene expression profile in patients with Sjögren's syndrome that is characterized by different clinical phenotypes. METHODS: RNA from peripheral blood mononuclear cells was purified in 8 patients with glandular features (GFs) and widespread pain (WP) and 11 with extraglandular manifestations (EGMs) and then was analyzed by hybridization on a human gene chip exploring more than 40,000 human genes. Differentially expressed genes (DEGs) in the two subgroups (ie, those with false discovery rate-corrected P values ≤ 0.01) with respect to 20 healthy controls have been submitted to functional classification using a Gene Ontology database and were mapped to define the networks of protein to protein interactions (PPIs). RESULTS: The enriched pathway analyses of DEGs and of the highly interconnected modules identified in the PPI networks showed that the pathological processes characterizing the two subgroups were substantially different. The predominant pathways in patients with EGMs are related to T- and B-cell activation, Toll-like receptor, interferon signaling, and apoptosis. Conversely, pathological processes related to pain transmission and modulation are preferentially operative in patients with GFs and WP. These data suggest that a neuroinflammatory pathway driven by cytokines and chemokines may play a central role in triggering WP features in this phenotype of patients. CONCLUSION: The present study supports the hypothesis that different biological pathways are operative in patients with primary Sjögren's syndrome with different clinical phenotypes. A better knowledge of these specific processes might help in tailoring more effective target therapies.

6.
J Clin Med ; 8(9)2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-31480511

RESUMEN

Primary Sjögren's syndrome (pSjS) is a chronic systemic autoimmune disorder, primarily affecting exocrine glands; its pathogenesis is still unclear. Long non-coding RNAs (lncRNAs) are thought to play a role in the pathogenesis of autoimmune diseases and a comprehensive analysis of lncRNAs expression in pSjS is still lacking. To this aim, the expression of more than 540,000 human transcripts, including those ascribed to more than 50,000 lncRNAs is profiled at the same time, in a cohort of 16 peripheral blood mononuclear cells PBMCs samples (eight pSjS and eight healthy subjects). A complex network analysis is carried out on the global set of molecular interactions among modulated genes and lncRNAs, leading to the identification of reliable lncRNA-miRNA-gene functional interactions. Taking this approach, a few lncRNAs are identified as targeting highly connected genes in the pSjS transcriptome, since they have a major impact on gene modulation in the disease. Such genes are involved in biological processes and molecular pathways crucial in the pathogenesis of pSjS, including immune response, B cell development and function, inflammation, apoptosis, type I and gamma interferon, epithelial cell adhesion and polarization. The identification of deregulated lncRNAs that modulate genes involved in the typical features of the disease provides insight in disease pathogenesis and opens avenues for the design of novel therapeutic strategies.

7.
Cells ; 8(8)2019 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-31382516

RESUMEN

Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease driven by genetic, environmental and epigenetic factors. Long non-coding RNAs (LncRNAs) are a key component of the epigenetic mechanisms and are known to be involved in the development of autoimmune diseases. In this work we aimed to identify significantly differentially expressed LncRNAs (DE-LncRNAs) that are functionally connected to modulated genes strictly associated with RA. In total, 542,500 transcripts have been profiled in peripheral blood mononuclear cells (PBMCs) from four patients with early onset RA prior any treatment and four healthy donors using Clariom D arrays. Results were confirmed by real-time PCR in 20 patients and 20 controls. Six DE-LncRNAs target experimentally validated miRNAs able to regulate differentially expressed genes (DEGs) in RA; among them, only FTX, HNRNPU-AS1 and RP11-498C9.15 targeted a large number of DEGs. Most importantly, RP11-498C9.15 targeted the largest number of signalling pathways that were found to be enriched by the global amount of RA-DEGs and that have already been associated with RA and RA-synoviocytes. Moreover, RP11-498C9.15 targeted the most highly connected genes in the RA interactome, thus suggesting its involvement in crucial gene regulation. These results indicate that, by modulating both microRNAs and gene expression, RP11-498C9.15 may play a pivotal role in RA pathogenesis.


Asunto(s)
Artritis Reumatoide/genética , Regulación de la Expresión Génica/genética , MicroARNs/genética , ARN Largo no Codificante/genética , Adulto , Anciano , Femenino , Perfilación de la Expresión Génica/métodos , Redes Reguladoras de Genes , Humanos , Masculino , Persona de Mediana Edad , ARN Largo no Codificante/sangre
8.
J Clin Med ; 8(3)2019 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-30866419

RESUMEN

Systemic sclerosis (SSc) is an autoimmune disease characterized by three main features: vasculopathy, immune system dysregulation and fibrosis. Long non-coding RNAs (lncRNAs) may play a role in the pathogenesis of autoimmune diseases and a comprehensive analysis of lncRNAs expression in SSc is still lacking. We profiled 542,500 transcripts in peripheral blood mononuclear cells (PBMCs) from 20 SSc patients and 20 healthy donors using Clariom D arrays, confirming the results by Reverse Transcription Polymerase-chain reaction (RT-PCR). A total of 837 coding-genes were modulated in SSc patients, whereas only one lncRNA, heterogeneous nuclear ribonucleoprotein U processed transcript (ncRNA00201), was significantly downregulated. This transcript regulates tumor proliferation and its gene target hnRNPC (Heterogeneous nuclear ribonucleoproteins C) encodes for a SSc-associated auto-antigen. NcRNA00201 targeted micro RNAs (miRNAs) regulating the most highly connected genes in the Protein-Protein interaction (PPI) network of the SSc transcriptome. A total of 26 of these miRNAs targeted genes involved in pathways connected to the three main features of SSc and to cancer development including Epidermal growth factor (EGF) receptor, ErbB1 downstream, Sphingosine 1 phosphate receptor 1 (S1P1), Activin receptor-like kinase 1 (ALK1), Endothelins, Ras homolog family member A (RhoA), Class I Phosphoinositide 3-kinase (PI3K), mammalian target of rapamycin (mTOR), p38 mitogen-activated protein kinase (MAPK), Ras-related C3 botulinum toxin substrate 1 (RAC1), Transforming growth factor (TGF)-beta receptor, Myeloid differentiation primary response 88 (MyD88) and Toll-like receptors (TLRs) pathways. In SSc, the identification of a unique deregulated lncRNA that regulates genes involved in the three main features of the disease and in tumor-associated pathways, provides insight in disease pathogenesis and opens avenues for the design of novel therapeutic strategies.

9.
Front Immunol ; 9: 1533, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30061880

RESUMEN

Psoriatic arthritis (PsA) is an inflammatory arthritis, characterized by inflammation of entheses and synovium, leading to joint erosions and new bone formation. It affects 10-30% of patients with psoriasis, and has an estimated prevalence of approximately 1%. PsA is considered to be primarily an autoimmune disease, driven by autoreactive T cells directed against autoantigens present in the skin and in the joints. However, an autoinflammatory origin has recently been proposed. Long noncoding RNAs (lncRNAs) are RNAs more than 200 nucleotides in length that do not encode proteins. LncRNAs play important roles in several biological processes, including chromatin remodeling, transcription control, and post-transcriptional processing. Several studies have shown that lncRNAs are expressed in a stage-specific or lineage-specific manner in immune cells that have a role in the development, activation, and effector functions of immune cells. LncRNAs are thought to play a role in several diseases, including autoimmune disorders. Indeed, a few lncRNAs have been identified in systemic lupus erythematosus, rheumatoid arthritis, and psoriasis. Although several high-throughput studies have been performed to identify lncRNAs, their biological and pathological relevance are still unknown, and most transcriptome studies in autoimmune diseases have only assessed protein-coding transcripts. No data are currently available on lncRNAs in PsA. Therefore, by microarray analysis, we have investigated the expression profiles of more than 50,000 human lncRNAs in blood samples from PsA patients and healthy controls using Human Clariom D Affymetrix chips, suitable to detect rare and low-expressing transcripts otherwise unnoticed by common sequencing methodologies. Network analysis identified lncRNAs targeting highly connected genes in the PsA transcriptome. Such genes are involved in molecular pathways crucial for PsA pathogenesis, including immune response, glycolipid metabolism, bone remodeling, type 1 interferon, wingless related integration site, and tumor necrosis factor signaling. Selected lncRNAs were validated by RT-PCR in an expanded cohort of patients. Moreover, modulated genes belonging to meaningful pathways were validated by RT-PCR in PsA PBMCs and/or by ELISA in PsA sera. The findings indicate that lncRNAs are involved in PsA pathogenesis by regulating both microRNAs and genes and open new avenues for the identification of new biomarkers and therapeutical targets.

10.
Biomed Res Int ; 2018: 7305380, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29850558

RESUMEN

BACKGROUND: Psoriatic arthritis (PsA) is an inflammatory arthritis, characterized by bone erosions and new bone formation. MicroRNAs (miRNAs) are key regulators of the immune responses. Differential expression of miRNAs has been reported in several inflammatory autoimmune diseases; however, their role in PsA is not fully elucidated. We aimed to identify miRNA expression signatures associated with PsA and to investigate their potential implication in the disease pathogenesis. METHODS: miRNA microarray was performed in blood cells of PsA patients and healthy controls. miRNA pathway analyses were performed and the global miRNA profiling was combined with transcriptome data in PsA. Deregulation of selected miRNAs was validated by real-time PCR. RESULTS: We identified specific miRNA signatures associated with PsA patients with active disease. These miRNAs target pathways relevant in PsA, such as TNF, MAPK, and WNT signaling cascades. Network analysis revealed several miRNAs regulating highly connected genes within the PsA transcriptome. miR-126-3p was the most downregulated miRNA in active patients. Noteworthy, miR-126 overexpression induced a decreased expression of genes implicated in PsA. CONCLUSIONS: This study sheds light on some epigenetic aspects of PsA identifying specific miRNAs, which may represent promising candidates as biomarkers and/or for the design of novel therapeutic strategies in PsA.


Asunto(s)
Artritis Psoriásica/genética , Artritis Psoriásica/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Adulto , Artritis Psoriásica/sangre , Biomarcadores/sangre , Femenino , Perfilación de la Expresión Génica , Humanos , Células Jurkat , Masculino , MicroARNs/sangre , Persona de Mediana Edad , Transducción de Señal/genética , Transcriptoma/genética
11.
J Immunol Res ; 2018: 4246965, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29850627

RESUMEN

Behçet disease (BD) is a chronic inflammatory multisystem disease characterized by oral and genital ulcers, uveitis, and skin lesions. Disease etiopathogenesis is still unclear. We aim to elucidate some aspects of BD pathogenesis and to identify specific gene signatures in peripheral blood cells (PBCs) of patients with active disease using novel gene expression and network analysis. 179 genes were modulated in 10 PBCs of BD patients when compared to 10 healthy donors. Among differentially expressed genes the top enriched gene function was immune response, characterized by upregulation of Th17-related genes and type I interferon- (IFN-) inducible genes. Th17 polarization was confirmed by FACS analysis. The transcriptome identified gene classes (vascular damage, blood coagulation, and inflammation) involved in the pathogenesis of the typical features of BD. Following network analysis, the resulting interactome showed 5 highly connected regions (clusters) enriched in T and B cell activation pathways and 2 clusters enriched in type I IFN, JAK/STAT, and TLR signaling pathways, all implicated in autoimmune diseases. We report here the first combined analysis of the transcriptome and interactome in PBCs of BD patients in the active stage of disease. This approach generates useful insights in disease pathogenesis and suggests an autoimmune component in the origin of BD.


Asunto(s)
Linfocitos B/fisiología , Síndrome de Behçet/genética , Vasos Sanguíneos/fisiología , Células Th17/fisiología , Autoinmunidad/genética , Coagulación Sanguínea/genética , Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Inflamación/genética , Interferón Tipo I/genética , Interferón Tipo I/metabolismo , Quinasas Janus/metabolismo , Terapia Molecular Dirigida , Mapas de Interacción de Proteínas , Factores de Transcripción STAT/metabolismo , Transducción de Señal , Receptores Toll-Like/metabolismo , Transcriptoma/genética
12.
J Immunol Res ; 2018: 2405150, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29854829

RESUMEN

BACKGROUND: Behçet's disease (BD) is a chronic inflammatory multisystem disease characterized by oral and genital ulcers, uveitis, and skin lesions. MicroRNAs (miRNAs) are key regulators of immune responses. Differential expression of miRNAs has been reported in several inflammatory autoimmune diseases; however, their role in BD is not fully elucidated. We aimed to identify miRNA expression signatures associated with BD and to investigate their potential implication in the disease pathogenesis. METHODS: miRNA microarray analysis was performed in blood cells of BD patients and healthy controls. miRNA expression profiles were analyzed using Affymetrix arrays with a comprehensive coverage of miRNA sequences. Pathway analyses were performed, and the global miRNA profiling was combined with transcriptoma data in BD. Deregulation of selected miRNAs was validated by real-time PCR. RESULTS: We identified specific miRNA signatures associated with BD patients with active disease. These miRNAs target pathways relevant in BD, such as TNF, IFN gamma, and VEGF-VEGFR signaling cascades. Network analysis revealed several miRNAs regulating highly connected genes within the BD transcriptoma. CONCLUSIONS: The combined analysis of deregulated miRNAs and BD transcriptome sheds light on some epigenetic aspects of BD identifying specific miRNAs, which may represent promising candidates as biomarkers and/or for the design of novel therapeutic strategies in BD.


Asunto(s)
Síndrome de Behçet/genética , Redes Reguladoras de Genes/genética , MicroARNs/genética , Femenino , Perfilación de la Expresión Génica , Ensayos Analíticos de Alto Rendimiento , Humanos , Interferón gamma/genética , Interferón gamma/metabolismo , Masculino , Análisis por Micromatrices , Receptores de Factores de Crecimiento Endotelial Vascular/genética , Receptores de Factores de Crecimiento Endotelial Vascular/metabolismo , Transducción de Señal , Transcriptoma , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo
13.
J Immunol Res ; 2018: 9419204, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29736406

RESUMEN

Rotavirus is a double-stranded RNA virus belonging to the family of Reoviridae. The virus is transmitted by the faecal-oral route and infects intestinal cells causing gastroenteritis. Rotaviruses are the main cause of severe acute diarrhoea in children less than 5 years of age worldwide. In our previous work we have shown a link between rotavirus infection and celiac disease. Nonceliac gluten sensitivity (NCGS) is emerging as new clinical entity lacking specific diagnostic biomarkers which has been reported to occur in 6-10% of the population. Clinical manifestations include gastrointestinal and/or extraintestinal symptoms which recede with gluten withdrawal. The pathogenesis of the disease is still unknown. Aim of this work is to clarify some aspects of its pathogenesis using a gene array approach. Our results suggest that NCGS may have an autoimmune origin. This is based both on gene expression data (i.e., TH17-interferon signatures) and on the presence of TH17 cells and of serological markers of autoimmunity in NCGS. Our results also indicate a possible involvement of rotavirus infection in the pathogenesis of nonceliac gluten sensitivity similarly to what we have previously shown in celiac disease.


Asunto(s)
Enfermedades Autoinmunes/inmunología , Enfermedad Celíaca/inmunología , Glútenes/inmunología , Infecciones por Rotavirus/inmunología , Rotavirus/inmunología , Células Th17/inmunología , Adulto , Autoanticuerpos/sangre , Autoinmunidad , Preescolar , Diarrea , Femenino , Perfilación de la Expresión Génica , Humanos , Masculino
14.
Front Immunol ; 9: 449, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29559981

RESUMEN

Systemic sclerosis (SSc) is a rare connective tissue disease characterized by three pathogenetic hallmarks: vasculopathy, dysregulation of the immune system, and fibrosis. A particular feature of SSc is the increased frequency of some types of malignancies, namely breast, lung, and hematological malignancies. Moreover, SSc may also be a paraneoplastic disease, again indicating a strong link between cancer and scleroderma. The reason of this association is still unknown; therefore, we aimed at investigating whether particular genetic or epigenetic factors may play a role in promoting cancer development in patients with SSc and whether some features are shared by the two conditions. We therefore performed a gene expression profiling of peripheral blood mononuclear cells (PBMCs) derived from patients with limited and diffuse SSc, showing that the various classes of genes potentially linked to the pathogenesis of SSc (such as apoptosis, endothelial cell activation, extracellular matrix remodeling, immune response, and inflammation) include genes that directly participate in the development of malignancies or that are involved in pathways known to be associated with carcinogenesis. The transcriptional analysis was then complemented by a complex network analysis of modulated genes which further confirmed the presence of signaling pathways associated with carcinogenesis. Since epigenetic mechanisms, such as microRNAs (miRNAs), are believed to play a central role in the pathogenesis of SSc, we also evaluated whether specific cancer-related miRNAs could be deregulated in the serum of SSc patients. We focused our attention on miRNAs already found upregulated in SSc such as miR-21-5p, miR-92a-3p, and on miR-155-5p, miR 126-3p and miR-16-5p known to be deregulated in malignancies associated to SSc, i.e., breast, lung, and hematological malignancies. miR-21-5p, miR-92a-3p, miR-155-5p, and miR-16-5p expression was significantly higher in SSc sera compared to healthy controls. Our findings indicate the presence of modulated genes and miRNAs that can play a predisposing role in the development of malignancies in SSc and are important for a better risk stratification of patients and for the identification of a better individualized precision medicine strategy.


Asunto(s)
Carcinogénesis/genética , Inflamación/genética , Leucocitos Mononucleares/inmunología , MicroARNs/genética , Esclerodermia Sistémica/genética , Adulto , Anciano , Apoptosis , Epigénesis Genética , Femenino , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Persona de Mediana Edad , Mapas de Interacción de Proteínas
15.
Genes (Basel) ; 8(4)2017 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-28441778

RESUMEN

The etiology of Ankylosing spondylitis (AS) is still unknown and the identification of the involved molecular pathogenetic pathways is a current challenge in the study of the disease. Adalimumab (ADA), an anti-tumor necrosis factor (TNF)-alpha agent, is used in the treatment of AS. We aimed at identifying pathogenetic pathways modified by ADA in patients with a good response to the treatment. Gene expression analysis of Peripheral Blood Cells (PBC) from six responders and four not responder patients was performed before and after treatment. Differentially expressed genes (DEGs) were submitted to functional enrichment analysis and network analysis, followed by modules selection. Most of the DEGs were involved in signaling pathways and in immune response. We identified three modules that were mostly impacted by ADA therapy and included genes involved in mitogen activated protein (MAP) kinase, wingless related integration site (Wnt), fibroblast growth factor (FGF) receptor, and Toll-like receptor (TCR) signaling. A separate analysis showed that a higher percentage of DEGs was modified by ADA in responders (44%) compared to non-responders (12%). Moreover, only in the responder group, TNF, Wnt, TLRs and type I interferon signaling were corrected by the treatment. We hypothesize that these pathways are strongly associated to AS pathogenesis and that they might be considered as possible targets of new drugs in the treatment of AS.

16.
PLoS One ; 12(1): e0171073, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28135336

RESUMEN

Ankylosing spondylitis (AS) is a chronic inflammatory arthritis of unknown origin. Its autoimmune origin has been suggested but never proven. Several reports have implicated Klebsiella pneumoniae as a triggering or perpetuating factor in AS; however, its role in the disease pathogenesis remains debated. Moreover, despite extensive investigations, a biomarker for AS has not yet been identified. To clarify these issues, we screened a random peptide library with pooled IgGs obtained from 40 patients with AS. A peptide (AS peptide) selected from the library was recognized by serum IgGs from 170 of 200 (85%) patients with AS but not by serum specimens from 100 healthy controls. Interestingly, the AS peptide shows a sequence similarity with several molecules expressed at the fibrocartilaginous sites that are primarily involved in the AS inflammatory process. Moreover, the peptide is highly homologous to a Klebsiella pneumoniae dipeptidase (DPP) protein. The antibody affinity purified against the AS peptide recognizes the autoantigens and the DPP protein. Furthermore, serum IgG antibodies against the Klebsiella DPP121-145 peptide epitope were detected in 190 of 200 patients with AS (95%), 3 of 200 patients with rheumatoid arthritis (1.5%) and only 1 of 100 (1%) patients with psoriatic arthritis. Such reactivity was not detected in healthy control donors. Our results show that antibodies directed against an epitope of a Klebsiella pneumoniae-derived protein are present in nearly all patients with AS. In the absence of serological biomarkers for AS, such antibodies may represent a useful tool in the diagnosis of the disease.


Asunto(s)
Anticuerpos Antibacterianos/sangre , Anticuerpos Antibacterianos/inmunología , Proteínas Bacterianas/inmunología , Epítopos/inmunología , Klebsiella pneumoniae/inmunología , Péptidos/inmunología , Espondilitis Anquilosante/sangre , Espondilitis Anquilosante/inmunología , Secuencia de Aminoácidos , Autoantígenos/inmunología , Proteínas Bacterianas/química , Femenino , Humanos , Inflamación/sangre , Inflamación/inmunología , Masculino , Persona de Mediana Edad , Biblioteca de Péptidos , Péptidos/química , Homología de Secuencia de Aminoácido
17.
Autoimmun Rev ; 15(9): 877-82, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27392505

RESUMEN

Common variable immunodeficiency (CVID) is a heterogeneous group of diseases, characterized by primary hypogammaglobulinemia. B and T cell abnormalities have been described in CVID. Typical clinical features of CVID are recurrent airway infections; lymphoproliferative, autoinflammatory, or neoplastic disorders; and autoimmune diseases among which autoimmune thrombocytopenia (ITP) is the most common. The coexistence of immunodeficiency and autoimmunity appears paradoxical, since one represents a hypoimmune state and the other a hyperimmune state. Considering both innate and adaptive immune response abnormalities in CVID, it is easier to understand the mechanisms that lead to a breakdown of self-tolerance. CD21(low) B cells derive from mature B cells that have undergone chronic immune stimulation; they are increased in CVID patients. The expansion of CD21(low) B cells is also observed in certain autoimmune diseases. We have studied CD21(low) B cells in patients with CVID, CVID, and ITP and with ITP only. We observed a statistically significant increase in the CD21(low) population in the three pathological groups. Moreover, we found statistical differences between the two groups of CVID patients: patients with ITP had a higher percentage of CD21(low) cells. Our data suggest that CD21(low) cells are related to autoimmunity and may represent a link between infection and autoimmunity.


Asunto(s)
Infecciones Bacterianas/inmunología , Inmunodeficiencia Variable Común/inmunología , Púrpura Trombocitopénica Idiopática/inmunología , Adulto , Autoinmunidad/inmunología , Linfocitos B/inmunología , Infecciones Bacterianas/microbiología , Inmunodeficiencia Variable Común/complicaciones , Femenino , Humanos , Huésped Inmunocomprometido , Recuento de Linfocitos , Masculino , Persona de Mediana Edad , Púrpura Trombocitopénica Idiopática/complicaciones , Linfocitos T/inmunología
18.
Front Plant Sci ; 6: 1080, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26648961

RESUMEN

Plants are ideal for the production of protein-based nanomaterials because they synthesize and assemble complex multimeric proteins that cannot be expressed efficiently using other platforms. Plant viruses can be thought of as self-replicating proteinaceous nanomaterials generally stable and easily produced in high titers. We used Potato virus X (PVX), chimeric virus particles, and Cowpea mosaic virus, empty virus-like particles to display a linear peptide (lipo) derived from human lipocalin, which is immunodominant in Sjögren's syndrome (SjS) and is thus recognized by autoantibodies in SjS patient serum. These virus-derived nanoparticles were thus used to develop a diagnostic assay for SjS based on a direct enzyme linked immunosorbent assay format. We found that PVX-lipo formulations were more sensitive than the chemically synthesized immunodominant peptide and equally specific when used to distinguish between healthy individuals and SjS patients. Our novel assay therefore allows the diagnosis of SjS using a simple, low-invasive serum test, contrasting with the invasive labial biopsy required for current tests. Our results demonstrate that nanomaterials based on plant viruses can be used as diagnostic reagents for SjS, and could also be developed for the diagnosis of other diseases.

19.
PLoS One ; 10(6): e0128262, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26086874

RESUMEN

BACKGROUND: Psoriatic arthritis (PsA) is an inflammatory arthritis whose pathogenesis is poorly understood; it is characterized by bone erosions and new bone formation. The diagnosis of PsA is mainly clinical and diagnostic biomarkers are not yet available. The aim of this work was to clarify some aspects of the disease pathogenesis and to identify specific gene signatures in paired peripheral blood cells (PBC) and synovial biopsies of patients with PsA. Moreover, we tried to identify biomarkers that can be used in clinical practice. METHODS: PBC and synovial biopsies of 10 patients with PsA were used to study gene expression using Affymetrix arrays. The expression values were validated by Q-PCR, FACS analysis and by the detection of soluble mediators. RESULTS: Synovial biopsies of patients showed a modulation of approximately 200 genes when compared to the biopsies of healthy donors. Among the differentially expressed genes we observed the upregulation of Th17 related genes and of type I interferon (IFN) inducible genes. FACS analysis confirmed the Th17 polarization. Moreover, the synovial trascriptome shows gene clusters (bone remodeling, angiogenesis and inflammation) involved in the pathogenesis of PsA. Interestingly 90 genes are modulated in both compartments (PBC and synovium) suggesting that signature pathways in PBC mirror those of the inflamed synovium. Finally the osteoactivin gene was upregulared in both PBC and synovial biopsies and this finding was confirmed by the detection of high levels of osteoactivin in PsA sera but not in other inflammatory arthritides. CONCLUSIONS: We describe the first analysis of the trancriptome in paired synovial tissue and PBC of patients with PsA. This study strengthens the hypothesis that PsA is of autoimmune origin since the coactivity of IFN and Th17 pathways is typical of autoimmunity. Finally these findings have allowed the identification of a possible disease biomarker, osteoactivin, easily detectable in PsA serum.


Asunto(s)
Artritis Psoriásica/metabolismo , Leucocitos Mononucleares/metabolismo , Membrana Sinovial/metabolismo , Transcriptoma , Adulto , Artritis Psoriásica/sangre , Artritis Psoriásica/diagnóstico , Biomarcadores/sangre , Biopsia , Femenino , Perfilación de la Expresión Génica , Humanos , Masculino , Análisis de Secuencia por Matrices de Oligonucleótidos , Reacción en Cadena en Tiempo Real de la Polimerasa
20.
J Immunol Res ; 2015: 729654, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26090498

RESUMEN

The CD30/CD30L signalling system has been implicated in the pathogenesis of several autoimmune and inflammatory conditions. In rheumatoid arthritis (RA), soluble CD30 (sCD30) levels reflect the recruitment of CD30(+) T cells into the inflamed joints and correlate with a positive response to immunosuppressive therapy. The aim of our report was to clarify the role of CD30/CD30L signalling system in the pathogenesis of RA. Our analysis of the CD30L(+) T cell subsets in peripheral blood (PB) and synovial fluid (SF) of RA patients and of the related cytokine profiles suggests the involvement of CD30/CD30L signalling in polarization of T cells towards a Th17 phenotype with proinflammatory features. Moreover, in RA SF nearly 50% of Treg cells express CD30, probably as an attempt to downmodulate the ongoing inflammation. We also show here that the engagement of CD30L on neutrophils stimulated with CD30/Fc chimera may play a crucial role in RA inflammation since activated neutrophils release IL-8, thus potentially amplifying the local inflammatory damage. In conclusion, the results obtained suggest that the complex CD30/CD30L signalling pathway is implicated in the pathogenesis and progression of RA synovitis through a concerted action on several immune effector cells.


Asunto(s)
Artritis Reumatoide/sangre , Artritis Reumatoide/inmunología , Ligando CD30/inmunología , Antígeno Ki-1/inmunología , Líquido Sinovial/inmunología , Linfocitos T Reguladores/inmunología , Células Th17/inmunología , Femenino , Humanos , Inflamación/sangre , Inflamación/inmunología , Interleucina-8/inmunología , Masculino , Persona de Mediana Edad , Neutrófilos/inmunología , Transducción de Señal/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...