Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Science ; 365(6448): 65-69, 2019 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-31273118

RESUMEN

Organisms must respond to hypoxia to preserve oxygen homeostasis. We identify a thiol oxidase, previously assigned as cysteamine (2-aminoethanethiol) dioxygenase (ADO), as a low oxygen affinity (high-K mO2) amino-terminal cysteine dioxygenase that transduces the oxygen-regulated stability of proteins by the N-degron pathway in human cells. ADO catalyzes the conversion of amino-terminal cysteine to cysteine sulfinic acid and is related to the plant cysteine oxidases that mediate responses to hypoxia by an identical posttranslational modification. We show in human cells that ADO regulates RGS4/5 (regulator of G protein signaling) N-degron substrates, modulates G protein-coupled calcium ion signals and mitogen-activated protein kinase activity, and that its activity extends to other N-cysteine proteins including the angiogenic cytokine interleukin-32. Identification of a conserved enzymatic oxygen sensor in multicellular eukaryotes opens routes to better understanding and therapeutic targeting of adaptive responses to hypoxia.


Asunto(s)
Dioxigenasas/metabolismo , Oxígeno/metabolismo , Anaerobiosis , Arabidopsis/genética , Arabidopsis/metabolismo , Calcio/metabolismo , Señalización del Calcio , Línea Celular Tumoral , Cisteína/metabolismo , Dioxigenasas/genética , Humanos , Interleucinas/metabolismo , MAP Quinasa Quinasa Quinasa 5/metabolismo , Proteínas RGS/metabolismo
2.
J Mol Biol ; 431(15): 2810-2820, 2019 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-31125566

RESUMEN

The ability to perceive oxygen levels is crucial to many organisms because it allows discerning environments compatible with aerobic or anaerobic metabolism, as well as enabling rapid switch between these two energy strategies. Organisms from different taxa dedicate distinct mechanisms to associate oxygen fluctuations with biological responses. Following from this observation, we speculated that orthogonal oxygen sensing devices can be created by transfer of essential modules from one species to another in which they are not conserved. We expressed plant cysteine oxidase (PCOs) enzymes in Saccharomyces cerevisiae, to confer oxygen-conditional degradability to a bioluminescent protein tagged with the Cys-exposing N-degron typical of plant ERF-VII factors. Co-translation of a second luciferase protein, not subjected to oxygen-dependent proteolysis, made the resulting Double Luciferase Oxygen Reporter (DLOR) ratiometric. We show that DLOR acts as a proxy for oxygen dynamics in yeast cultures. Moreover, since DLOR activity was enabled by the PCO sensors, we employed this device to disclose some of their properties, such as the dispensability of nitric oxide for N-terminal cysteine oxidation and the individual performance of Arabidopsis PCO isoforms in vivo. In the future, we propose the synthetic DLOR device as a convenient, eukaryotic cell-based tool to easily screen substrates and inhibitors of cysteine oxidase enzymes in vivo. Replacement of the luminescent proteins with fluorescent proteins will further turn our system into a visual reporter for oxygen dynamics in living cells.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Cisteína-Dioxigenasa/metabolismo , Oxígeno/metabolismo , Saccharomyces cerevisiae/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Cisteína-Dioxigenasa/genética , Expresión Génica , Mediciones Luminiscentes , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Óxido Nítrico/metabolismo , Oxidación-Reducción , Proteolisis , Saccharomyces cerevisiae/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...