Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Inorg Chem ; 63(18): 8131-8141, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38639743

RESUMEN

Mixed metal oxyhalides are an exciting class of photocatalysts, capable of the sustainable generation of fuels and remediation of pollutants with solar energy. Bismuth oxyhalides of the types Bi4MO8X (M = Nb and Ta; X = Cl and Br) and Bi2AO4X (A = most lanthanides; X = Cl, Br, and I) have an electronic structure that imparts photostability, as their valence band maxima (VBM) are composed of O 2p orbitals rather than X np orbitals that typify many other bismuth oxyhalides. Here, flux-based synthesis of intergrowth Bi4NbO8Cl-Bi2GdO4Cl is reported, testing the hypothesis that both intergrowth stoichiometry and M identity serve as levers toward tunable optoelectronic properties. X-ray scattering and atomically resolved electron microscopy verify intergrowth formation. Facile manipulation of the Bi4NbO8Cl-to-Bi2GdO4Cl ratio is achieved with the specific ratio influencing both the crystal and electronic structures of the intergrowths. This compositional flexibility and crystal structure engineering can be leveraged for photocatalytic applications, with comparisons to the previously reported Bi4TaO8Cl-Bi2GdO4Cl intergrowth revealing how subtle structural and compositional features can impact photocatalytic materials.

2.
Nat Mater ; 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38605196

RESUMEN

Polar metals have recently garnered increasing interest because of their promising functionalities. Here we report the experimental realization of an intrinsic coexisting ferromagnetism, polar distortion and metallicity in quasi-two-dimensional Ca3Co3O8. This material crystallizes with alternating stacking of oxygen tetrahedral CoO4 monolayers and octahedral CoO6 bilayers. The ferromagnetic metallic state is confined within the quasi-two-dimensional CoO6 layers, and the broken inversion symmetry arises simultaneously from the Co displacements. The breaking of both spatial-inversion and time-reversal symmetries, along with their strong coupling, gives rise to an intrinsic magnetochiral anisotropy with exotic magnetic field-free non-reciprocal electrical resistivity. An extraordinarily robust topological Hall effect persists over a broad temperature-magnetic field phase space, arising from dipole-induced Rashba spin-orbit coupling. Our work not only provides a rich platform to explore the coupling between polarity and magnetism in a metallic system, with extensive potential applications, but also defines a novel design strategy to access exotic correlated electronic states.

3.
Inorg Chem ; 62(31): 12413-12422, 2023 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-37489948

RESUMEN

Transition metal subchalcogenides involve electron-rich metals and can facilitate an in-depth understanding of the relationships among quantum properties such as superconductivity, charge density wave, and topological band structures. However, effective experimental routes toward synthesizing transition metal subchalcogenides are still lacking, hindering the development of new quantum materials. Herein, we propose a eutectic polytelluride flux strategy as an excellent solution to address phase discovery and crystal growth in transition metal subtelluride systems. We report new phases easily and selectively synthesized using a eutectic "K3Te4" polytelluride flux upon adjusting the ratio of Nb metal to flux in the starting materials (K/Nb/Te = 3:x:4). Using a high Nb content in the solvent (x = 2 and 1), crystals of KNb3Te3O0.38 and K0.9Nb3Te4 are obtained. Both subtellurides exhibit diverse Nb clusters, including face-sharing and edge-sharing Nb6 octahedral columns and zig-zag Nb chains. Reducing the Nb content to x = 0.33 leads to the formation of a layered compound, K1.06NbTe2. This compound comprises a NbTe6 trigonal prism with K intercalated between the layers. Single crystals of known binary Nb tellurides can also be grown using another eutectic flux "KTe3.2", and the obtained NbTe2 exhibits a new polymorphism with extra trimerization along the b-axis in the Nb-Nb bonded double zig-zag cluster. Precise control over the structural dimensionality and oxidation state, combined with the facile crystal growth process, makes our synthetic strategy an efficient route to explore quantum materials in transition metal subchalcogenides.

4.
Adv Mater ; 34(49): e2202841, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36189841

RESUMEN

Magnetism in topological materials creates phases exhibiting quantized transport phenomena with potential technological applications. The emergence of such phases relies on strong interaction between localized spins and the topological bands, and the consequent formation of an exchange gap. However, this remains experimentally unquantified in intrinsic magnetic topological materials. Here, this interaction is quantified in MnBi2 Te4 , a topological insulator with intrinsic antiferromagnetism. This is achieved by optically exciting Bi-Te p states comprising the bulk topological bands and interrogating the consequent Mn 3d spin dynamics, using a multimodal ultrafast approach. Ultrafast electron scattering and magneto-optic measurements show that the p states demagnetize via electron-phonon scattering at picosecond timescales. Despite being energetically decoupled from the optical excitation, the Mn 3d spins, probed by resonant X-ray scattering, are observed to disorder concurrently with the p spins. Together with atomistic simulations, this reveals that the exchange coupling between localized spins and the topological bands is at least 100 times larger than the superexchange interaction, implying an optimal exchange gap of at least 25 meV in the surface states. By quantifying this exchange coupling, this study validates the materials-by-design strategy of utilizing localized magnetic order to manipulate topological phases, spanning static to ultrafast timescales.

5.
Chem Sci ; 13(23): 7034-7045, 2022 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-35774181

RESUMEN

The second quantum revolution harnesses exquisite quantum control for a slate of diverse applications including sensing, communication, and computation. Of the many candidates for building quantum systems, molecules offer both tunability and specificity, but the principles to enable high temperature operation are not well established. Spin-lattice relaxation, represented by the time constant T 1, is the primary factor dictating the high temperature performance of quantum bits (qubits), and serves as the upper limit on qubit coherence times (T 2). For molecular qubits at elevated temperatures (>100 K), molecular vibrations facilitate rapid spin-lattice relaxation which limits T 2 to well below operational minimums for certain quantum technologies. Here we identify the effects of controlling orbital angular momentum through metal coordination geometry and ligand rigidity via π-conjugation on T 1 relaxation in three four-coordinate Cu2+ S = ½ qubit candidates: bis(N,N'-dimethyl-4-amino-3-penten-2-imine) copper(ii) (Me2Nac)2 (1), bis(acetylacetone)ethylenediamine copper(ii) Cu(acacen) (2), and tetramethyltetraazaannulene copper(ii) Cu(tmtaa) (3). We obtain significant T 1 improvement upon changing from tetrahedral to square planar geometries through changes in orbital angular momentum. T 1 is further improved with greater π-conjugation in the ligand framework. Our electronic structure calculations reveal that the reduced motion of low energy vibrations in the primary coordination sphere slows relaxation and increases T 1. These principles enable us to report a new molecular qubit candidate with room temperature T 2 = 0.43 µs, and establishes guidelines for designing novel qubit candidates operating above 100 K.

6.
Nat Commun ; 13(1): 1929, 2022 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-35396393

RESUMEN

The emergence of magnetism in quantum materials creates a platform to realize spin-based applications in spintronics, magnetic memory, and quantum information science. A key to unlocking new functionalities in these materials is the discovery of tunable coupling between spins and other microscopic degrees of freedom. We present evidence for interlayer magnetophononic coupling in the layered magnetic topological insulator MnBi2Te4. Employing magneto-Raman spectroscopy, we observe anomalies in phonon scattering intensities across magnetic field-driven phase transitions, despite the absence of discernible static structural changes. This behavior is a consequence of a magnetophononic wave-mixing process that allows for the excitation of zone-boundary phonons that are otherwise 'forbidden' by momentum conservation. Our microscopic model based on density functional theory calculations reveals that this phenomenon can be attributed to phonons modulating the interlayer exchange coupling. Moreover, signatures of magnetophononic coupling are also observed in the time domain through the ultrafast excitation and detection of coherent phonons across magnetic transitions. In light of the intimate connection between magnetism and topology in MnBi2Te4, the magnetophononic coupling represents an important step towards coherent on-demand manipulation of magnetic topological phases.

7.
Adv Mater ; 34(22): e2101932, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34850459

RESUMEN

2D polymers (2DPs) are promising as structurally well-defined, permanently porous, organic semiconductors. However, 2DPs are nearly always isolated as closed shell organic species with limited charge carriers, which leads to low bulk conductivities. Here, the bulk conductivity of two naphthalene diimide (NDI)-containing 2DP semiconductors is enhanced by controllably n-doping the NDI units using cobaltocene (CoCp2 ). Optical and transient microwave spectroscopy reveal that both as-prepared NDI-containing 2DPs are semiconducting with sub-2 eV optical bandgaps and photoexcited charge-carrier lifetimes of tens of nanoseconds. Following reduction with CoCp2 , both 2DPs largely retain their periodic structures and exhibit optical and electron-spin resonance spectroscopic features consistent with the presence of NDI-radical anions. While the native NDI-based 2DPs are electronically insulating, maximum bulk conductivities of >10-4  S cm-1 are achieved by substoichiometric levels of n-doping. Density functional theory calculations show that the strongest electronic couplings in these 2DPs exist in the out-of-plane (π-stacking) crystallographic directions, which indicates that cross-plane electronic transport through NDI stacks is primarily responsible for the observed electronic conductivity. Taken together, the controlled molecular doping is a useful approach to access structurally well-defined, paramagnetic, 2DP n-type semiconductors with measurable bulk electronic conductivities of interest for electronic or spintronic devices.

8.
J Am Chem Soc ; 143(21): 8069-8077, 2021 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-34014650

RESUMEN

The combination of structural precision and reproducibility of synthetic chemistry is perfectly suited for the creation of chemical qubits, the core units of a quantum information science (QIS) system. By exploiting the atomistic control inherent to synthetic chemistry, we address a fundamental question of how the spin-spin distance between two qubits impacts electronic spin coherence. To achieve this goal, we designed a series of molecules featuring two spectrally distinct qubits, an early transition metal, Ti3+, and a late transition metal, Cu2+ with increasing separation between the two metals. Crucially, we also synthesized the monometallic congeners to serve as controls. The spectral separation between the two metals enables us to probe each metal individually in the bimetallic species and compare it with the monometallic control samples. Across a range of 1.2-2.5 nm, we find that electron spins have a negligible effect on coherence times, a finding we attribute to the distinct resonance frequencies. Coherence times are governed, instead, by the distance to nuclear spins on the other qubit's ligand framework. This finding offers guidance for the design of spectrally addressable molecular qubits.

9.
Phys Rev Lett ; 125(7): 077202, 2020 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-32857531

RESUMEN

We report a pressure-induced phase transition in the frustrated kagomé material jarosite at ∼45 GPa, which leads to the disappearance of magnetic order. Using a suite of experimental techniques, we characterize the structural, electronic, and magnetic changes in jarosite through this phase transition. Synchrotron powder x-ray diffraction and Fourier transform infrared spectroscopy experiments, analyzed in aggregate with the results from density functional theory calculations, indicate that the material changes from a R3[over ¯]m structure to a structure with a R3[over ¯]c space group. The resulting phase features a rare twisted kagomé lattice in which the integrity of the equilateral Fe^{3+} triangles persists. Based on symmetry arguments we hypothesize that the resulting structural changes alter the magnetic interactions to favor a possible quantum paramagnetic phase at high pressure.

10.
Chem Sci ; 11(23): 5922-5928, 2020 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-34094085

RESUMEN

The discovery of emergent materials lies at the intersection of chemistry and condensed matter physics. Synthetic chemistry offers a pathway to create materials with the desired physical and electronic structures that support fundamentally new properties. Metal-organic frameworks are a promising platform for bottom-up chemical design of new materials, owing to their inherent chemical predictability and tunability relative to traditional solid-state materials. Herein, we describe the synthesis and magnetic characterization of a new 2,5-dihydroxy-1,4-benzoquinone based material, (NMe2H2)3.5Ga2(C6O4Cl2)3 (1), which features radical-based electronic spins on the sites of a kagomé lattice, a geometric lattice known to engender exotic electronic properties. Vibrational and electronic spectroscopies, in combination with magnetic susceptibility measurements, revealed 1 exhibits mixed valency between the radical-bearing trianionic and diamagnetic tetraanionic oxidation states of the ligand. This unpaired electron density on the ligand forms a partially occupied kagomé lattice where approximately 85% of the lattice sites are occupied with an S = ½ spin. We found that gallium mediates ferromagnetic coupling between ligand spins, creating a ferromagnetic kagomé lattice. By modulation of the interlayer spacing via post-synthetic cation metathesis of 1 to (NMe4)3.5Ga2(C6O4Cl2)3 (2) and (NEt4)2(NMe4)1.5Ga2(C6O4Cl2)3 (3), we determined the nature of the magnetic coupling between neighboring planes is antiferromagnetic. Additionally, we determined the role of the metal in mediating this magnetic coupling by comparison of 2 with the In3+ analogue, (NMe4)3.5In2(C6O4Cl2)3 (4), and we found that Ga3+ supports stronger superexchange coupling between ligand-based spins than In3+. The combination of intraplanar ferromagnetic coupling and interplanar antiferromagnetic coupling exchange interactions suggests these are promising materials to host topological phenomena.

11.
Phys Rev Lett ; 123(23): 236402, 2019 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-31868440

RESUMEN

Using a first-principles approach, we design the heteroanionic oxynitride MoON to exhibit a first-order isosymmetric thermally activated Peierls-type metal-insulator transition (MIT). We identify a ground state insulating phase (α-MoON) with monoclinic Pc symmetry and a metastable high temperature metallic phase (ß-MoON) of equivalent symmetry. We find that ordered fac-MoO_{3}N_{3} octahedra with edge and corner connectivity stabilize the twisted Mo-Mo dimers present in the α phase, which activate the MIT through electron localization within the 4d a_{1g} manifold. By analyzing the temperature dependence of the soft zone-boundary instability driving the MIT, we estimate an ordering temperature T_{MIT}∼900 K. Our work shows that electronic transitions can be designed by exploiting multiple anions, and heteroanionic materials could offer new insights into the microscopic electron-lattice interactions governing unresolved transitions in homoanionic oxides.

12.
Inorg Chem ; 58(22): 14939-14980, 2019 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-31668070

RESUMEN

Nanostructured materials are essential building blocks for the fabrication of new devices for energy harvesting/storage, sensing, catalysis, magnetic, and optoelectronic applications. However, because of the increase of technological needs, it is essential to identify new functional materials and improve the properties of existing ones. The objective of this Viewpoint is to examine the state of the art of atomic-scale simulative and experimental protocols aimed to the design of novel functional nanostructured materials, and to present new perspectives in the relative fields. This is the result of the debates of Symposium I "Atomic-scale design protocols towards energy, electronic, catalysis, and sensing applications", which took place within the 2018 European Materials Research Society fall meeting.

13.
J Chem Inf Model ; 58(12): 2491-2501, 2018 12 24.
Artículo en Inglés | MEDLINE | ID: mdl-30111111

RESUMEN

Statistical analysis of local atomic distortions in crystalline materials is a powerful tool for understanding coupled electronic and structural phase transitions in transition metal compounds. The analyses of such complex materials, however, often require significant domain knowledge to recognize limitations in the available data, whether it be experimentally reported crystal structures, property measurements, or computed quantities, and to understand when additional experiments or simulations may be necessary. Here we show how additional descriptive statistics and computational experiments can help researchers explicitly recognize these limitations and fill in missing gaps by constructing amplitude ( a) and normalized-amplitude ( n) distortion-mode property correlation-coefficient heat maps, aCCHMs and nCCHMs, respectively. We demonstrate this utility within the rare-earth nickelate perovskites RNiO3 (R = rare earth ≠ La), which exhibit antiferromagnetic and metal-insulator transitions with crystallographic symmetry breaking, and analyze the CCHMs obtained from experimental and first-principles derived symmetry modes. In contrast with the crystallographic trends gleaned from the reported experimental structures, the equilibrium structures obtained from density functional theory indicate that the Jahn-Teller distortion mode plays a negligible role in affecting the Néel temperature. We explain this discrepancy and discuss how different researchers might draw disparate conclusions from the same evidence, in particular from aCCHMs and nCCHMs. Last, we propose a general method for utilizing CCHMs for screening large databases of structures.


Asunto(s)
Metales de Tierras Raras/química , Níquel/química , Cristalografía , Ciencia de los Materiales , Modelos Moleculares , Estructura Molecular
14.
Nano Lett ; 18(5): 3088-3095, 2018 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-29631404

RESUMEN

Polar domains arise in insulating ferroelectrics when free carriers are unable to fully screen surface-bound charges. Recently discovered binary and ternary polar metals exhibit broken inversion symmetry coexisting with free electrons that might be expected to suppress the electrostatic driving force for domain formation. Contrary to this expectation, we report the first direct observation of polar domains in single crystals of the polar metal Ca3Ru2O7. By a combination of mesoscale optical second-harmonic imaging and atomic-resolution scanning transmission electron microscopy, the polar domains are found to possess a quasi-two-dimensional slab geometry with a lateral size of ∼100 µm and thickness of ∼10 nm. Electronic structure calculations show that the coexistence of electronic and parity-lifting orders arise from anharmonic lattice interactions, which support 90° and 180° polar domains in a metal. Using in situ transmission electron microscopy, we also demonstrate a strain-tuning route to achieve ferroelastic switching of polar metal domains.

15.
Phys Rev Lett ; 115(8): 087202, 2015 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-26340204

RESUMEN

We examine the electronic properties of the newly discovered "ferroelectric metal" LiOsO3 combining density-functional and dynamical mean-field theories. We show that the material is close to a Mott transition and that electronic correlations can be tuned to engineer a Mott multiferroic state in the 1/1 superlattice of LiOsO3 and LiNbO3. We use electronic structure calculations to predict that the (LiOsO3)1/(LiNbO3)1 superlattice exhibits strong coupling between magnetic and ferroelectric degrees of freedom with a ferroelectric polarization of 41.2 µC cm(-2), Curie temperature of 927 K, and Néel temperature of 379 K. Our results support a route towards high-temperature multiferroics, i.e., driving nonmagnetic polar metals into correlated insulating magnetic states.

16.
J Phys Condens Matter ; 26(26): 265501, 2014 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-24911950

RESUMEN

Using first-principles calculations, we compute the linear optical properties for cation ordered (Sr,Ca)Ru2O6. Our calculations show that this polar ferromagnetic metallic oxide exhibits optical anisotropy along the principal directions of the optical indicatrix owing to the absence of inversion symmetry in the crystal structure. The calculated reflectivity is used to locate the onset of the inter-band transitions at an energy of 1.3 eV. Comparing the optical conductivity with the electronic band structure, we identify the possible optical transitions. Finally, we apply the generalized Drude model to deduce an enhancement of the effective mass, m(*) ∼ 4.9m(e), in ordered (Sr,Ca)Ru2O6. Moreover, we show that removal of the polar distortions decrease the effective mass to m(*) ∼ 4.4m(e), suggesting that control over the amplitude of the polar displacements could be used to tune the degree of electronic correlation in oxide conductors without inversion symmetry.

17.
Nat Commun ; 5: 3432, 2014 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-24633396

RESUMEN

The existence of ~30 noncentrosymmetric metals (NCSM) suggests a contraindication between crystal structures without inversion symmetry and metallic behaviour. Those containing oxygen are especially scarce. Here we propose and demonstrate a design framework to remedy this property disparity and accelerate NCSM oxide discovery. The primary ingredient relies on the removal of inversion symmetry through displacements of atoms whose electronic degrees of freedom are decoupled from the states at the Fermi level. Density functional theory calculations validate this crystal-chemistry strategy, and we predict a new polar ruthenate exhibiting robust metallicity. We demonstrate that the electronic structure is unaffected by the inclusion of spin-orbit interactions, and that cation-ordered SrCaRu2O6 exhibits a large thermopower anisotropy (|ΔS⊥|~6.3 µV K(-1) at 300 K) derived from its polar structure. Our findings provide chemical and structural selection guidelines to aid in the search of NCSM with enhanced thermopower anisotropy.

18.
Inorg Chem ; 53(1): 336-48, 2014 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-24320755

RESUMEN

Noncentrosymmetric (NCS) phases are seldom seen in layered A2BO4 Ruddlesden-Popper (214 RP) oxides. In this work, we uncover the underlying crystallographic symmetry restrictions that enforce the spatial parity operation of inversion and then subsequently show how to lift them to achieve NCS structures. Simple octahedral distortions alone, while impacting the electronic and magnetic properties, are insufficient. We show using group theory that the condensation of two distortion modes, which describe suitable symmetry unique octahedral distortions or a combination of a single octahedral distortion with a "compositional" A or B cation ordering mode, is able to transform the centrosymmetric aristotype into a NCS structure. With these symmetry guidelines, we formulate a data-driven model founded on Bayesian inference that allows us to rationally search for combinations of A- and B-site elements satisfying the inversion symmetry lifting criterion. We describe the general methodology and apply it to 214 iridates with A(2+) cations, identifying RP-structured Ca2IrO4 as a potential NCS oxide, which we evaluate with density functional theory. We find a strong energetic competition between two closely related polar and nonpolar low-energy crystal structures in Ca2IrO4 and suggest pathways to stabilize the NCS structure.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...