Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
mSphere ; 3(2)2018.
Artículo en Inglés | MEDLINE | ID: mdl-29577083

RESUMEN

Mayaro virus (MAYV), Venezuelan equine encephalitis virus (VEEV), and chikungunya virus (CHIKV) are vector-borne alphaviruses that cocirculate in South America. Human infections by these viruses are frequently underdiagnosed or misdiagnosed, especially in areas with high dengue virus endemicity. Disease may progress to debilitating arthralgia (MAYV, CHIKV), encephalitis (VEEV), and death. Few standardized serological assays exist for specific human alphavirus infection detection, and antigen cross-reactivity can be problematic. Therefore, serological platforms that aid in the specific detection of multiple alphavirus infections will greatly expand disease surveillance for these emerging infections. In this study, serum samples from South American patients with PCR- and/or isolation-confirmed infections caused by MAYV, VEEV, and CHIKV were examined by using a protein microarray assembled with recombinant capsid, envelope protein 1 (E1), and E2 from nine New and Old World alphaviruses. Notably, specific antibody recognition of E1 was observed only with MAYV infections, whereas E2 was specifically targeted by antibodies from all of the alphavirus infections investigated, with evidence of cross-reactivity to E2 of o'nyong-nyong virus only in CHIKV-infected patient serum samples. Our findings suggest that alphavirus structural protein microarrays can distinguish infections caused by MAYV, VEEV, and CHIKV and that this multiplexed serological platform could be useful for high-throughput disease surveillance. IMPORTANCE Mayaro, chikungunya, and Venezuelan equine encephalitis viruses are closely related alphaviruses that are spread by mosquitos, causing diseases that produce similar influenza-like symptoms or more severe illnesses. Moreover, alphavirus infection symptoms can be similar to those of dengue or Zika disease, leading to underreporting of cases and potential misdiagnoses. New methods that can be used to detect antibody responses to multiple alphaviruses within the same assay would greatly aid disease surveillance efforts. However, possible antibody cross-reactivity between viruses can reduce the quality of laboratory results. Our results demonstrate that antibody responses to multiple alphaviruses can be specifically quantified within the same assay by using selected recombinant protein antigens and further show that Mayaro virus infections result in unique responses to viral envelope proteins.

2.
Clin Vaccine Immunol ; 24(4)2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28228395

RESUMEN

Zika virus (ZIKV) infections occur in areas where dengue virus (DENV), West Nile virus (WNV), yellow fever virus (YFV), and other viruses of the genus Flavivirus cocirculate. The envelope (E) proteins of these closely related flaviviruses induce specific long-term immunity, yet subsequent infections are associated with cross-reactive antibody responses that may enhance disease susceptibility and severity. To gain a better understanding of ZIKV infections against a background of similar viral diseases, we examined serological immune responses to ZIKV, WNV, DENV, and YFV infections of humans and nonhuman primates (NHPs). Using printed microarrays, we detected very specific antibody responses to primary infections with probes of recombinant E proteins from 15 species and lineages of flaviviruses pathogenic to humans, while high cross-reactivity between ZIKV and DENV was observed with 11 printed native viruses. Notably, antibodies from human primary ZIKV or secondary DENV infections that occurred in areas where flavivirus is endemic broadly recognized E proteins from many flaviviruses, especially DENV, indicating a strong influence of infection history on immune responses. A predictive algorithm was used to tentatively identify previous encounters with specific flaviviruses based on serum antibody interactions with the multispecies panel of E proteins. These results illustrate the potential impact of exposure to related viruses on the outcome of ZIKV infection and offer considerations for development of vaccines and diagnostics.


Asunto(s)
Anticuerpos Antivirales/sangre , Formación de Anticuerpos , Reacciones Cruzadas , Enfermedades Endémicas , Infecciones por Flaviviridae/inmunología , Infecciones por Flaviviridae/veterinaria , Animales , Humanos , Macaca mulatta , Análisis por Micromatrices , Enfermedades de los Primates/inmunología , Análisis por Matrices de Proteínas
3.
Mol Cell Proteomics ; 15(10): 3220-3232, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27489291

RESUMEN

Binary protein interactions form the basic building blocks of molecular networks and dynamic assemblies that control all cellular functions of bacteria. Although these protein interactions are a potential source of targets for the development of new antibiotics, few high-confidence data sets are available for the large proteomes of most pathogenic bacteria. We used a library of recombinant proteins from the plague bacterium Yersinia pestis to probe planar microarrays of immobilized proteins that represented ∼85% (3552 proteins) of the bacterial proteome, resulting in >77,000 experimentally determined binary interactions. Moderate (KD ∼µm) to high-affinity (KD ∼nm) interactions were characterized for >1600 binary complexes by surface plasmon resonance imaging of microarrayed proteins. Core binary interactions that were in common with other gram-negative bacteria were identified from the results of both microarray methods. Clustering of proteins within the interaction network by function revealed statistically enriched complexes and pathways involved in replication, biosynthesis, virulence, metabolism, and other diverse biological processes. The interaction pathways included many proteins with no previously known function. Further, a large assembly of proteins linked to transcription and translation were contained within highly interconnected subregions of the network. The two-tiered microarray approach used here is an innovative method for detecting binary interactions, and the resulting data will serve as a critical resource for the analysis of protein interaction networks that function within an important human pathogen.


Asunto(s)
Proteínas Bacterianas/metabolismo , Análisis por Matrices de Proteínas/métodos , Yersinia pestis/metabolismo , Sistema Libre de Células , Análisis por Conglomerados , Biología Computacional/métodos , Mapas de Interacción de Proteínas , Proteómica/métodos , Resonancia por Plasmón de Superficie
4.
Viral Immunol ; 29(6): 361-6, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27214505

RESUMEN

U.S. military personnel deployed to high-risk areas receive the live vaccinia virus (VACV) smallpox vaccine ACAM2000. VACV shedding from the vaccination site can result in autoinoculation and contact transmission. We previously found that the application of povidone iodine ointment (PIO) to the scarification site reduced viral shedding without altering the antibody response, as measured by plaque reduction neutralization or enzyme-linked immunosorbent assays. In this study, we used protein microarray assays to measure the amount of immunoglobulin G antibody bound to (1) ACAM2000 itself and (2) individual VACV antigens that are present within ACAM2000. We assessed antibody binding in sera from primary smallpox vaccinees who applied PIO to the scarification site beginning on day 7 (PIO group) and from those who did not apply PIO (control group). In both cohorts, the postvaccination antibody response-in terms of antibody binding, both to ACAM2000 and to 11 individual VACV antigens-was significantly greater than the prevaccination response (all p < 0.0001). The postvaccination antibody binding levels of vaccinees in the PIO group did not differ from those of control vaccinees. These findings further support the topical application of PIO, starting on day 7, to reduce the viral shedding associated with smallpox vaccination.


Asunto(s)
Antiinfecciosos Locales/administración & dosificación , Anticuerpos Antivirales/sangre , Formación de Anticuerpos , Interacciones Farmacológicas , Inmunoglobulina G/sangre , Povidona Yodada/administración & dosificación , Vacuna contra Viruela/inmunología , Ensayo de Inmunoadsorción Enzimática , Femenino , Humanos , Masculino , Pruebas de Neutralización , Pomadas/administración & dosificación , Vacuna contra Viruela/administración & dosificación , Estados Unidos , Ensayo de Placa Viral , Adulto Joven
5.
Clin Vaccine Immunol ; 21(6): 877-85, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24759651

RESUMEN

Dryvax (Wyeth Laboratories, Inc., Marietta, PA) is representative of the vaccinia virus preparations that were previously used for preventing smallpox. While Dryvax was highly effective, the national supply stocks were depleted, and there were manufacturing concerns regarding sterility and the clonal heterogeneity of the vaccine. ACAM2000 (Acambis, Inc./Sanofi-Pasteur Biologics Co., Cambridge, MA), a single-plaque-purified vaccinia virus derivative of Dryvax, recently replaced the polyclonal smallpox vaccine for use in the United States. A substantial amount of sequence heterogeneity exists within the polyclonal proteome of Dryvax, including proteins that are missing from ACAM2000. Reasoning that a detailed comparison of antibody responses to the polyclonal and monoclonal vaccines may be useful for identifying unique properties of each antibody response, we utilized a protein microarray comprised of approximately 94% of the vaccinia poxvirus proteome (245 proteins) to measure protein-specific antibody responses of 71 individuals receiving a single vaccination with ACAM2000 or Dryvax. We observed robust antibody responses to 21 poxvirus proteins in vaccinated individuals, including 11 proteins that distinguished Dryvax responses from ACAM2000. Analysis of protein sequences from Dryvax clones revealed amino acid level differences in these 11 antigenic proteins and suggested that sequence variation and clonal heterogeneity may contribute to the observed differences between Dryvax and ACAM2000 antibody responses.


Asunto(s)
Formación de Anticuerpos/inmunología , Vacuna contra Viruela/inmunología , Virus Vaccinia/inmunología , Adulto , Secuencia de Aminoácidos , Femenino , Humanos , Masculino , Proteoma/genética , Proteoma/inmunología , Viruela/inmunología , Viruela/prevención & control , Estados Unidos , Vacunación , Vacunas Atenuadas/inmunología , Virus Vaccinia/genética , Adulto Joven
6.
PLoS One ; 5(12): e15547, 2010 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-21209900

RESUMEN

Monkeypox is a zoonotic viral disease that occurs primarily in Central and West Africa. A recent outbreak in the United States heightened public health concerns for susceptible human populations. Vaccinating with vaccinia virus to prevent smallpox is also effective for monkeypox due to a high degree of sequence conservation. Yet, the identity of antigens within the monkeypox virus proteome contributing to immune responses has not been described in detail. We compared antibody responses to monkeypox virus infection and human smallpox vaccination by using a protein microarray covering 92-95% (166-192 proteins) of representative proteomes from monkeypox viral clades of Central and West Africa, including 92% coverage (250 proteins) of the vaccinia virus proteome as a reference orthopox vaccine. All viral gene clones were verified by sequencing and purified recombinant proteins were used to construct the microarray. Serum IgG of cynomolgus macaques that recovered from monkeypox recognized at least 23 separate proteins within the orthopox proteome, while only 14 of these proteins were recognized by IgG from vaccinated humans. There were 12 of 14 antigens detected by sera of human vaccinees that were also recognized by IgG from convalescent macaques. The greatest level of IgG binding for macaques occurred with the structural proteins F13L and A33R, and the membrane scaffold protein D13L. Significant IgM responses directed towards A44R, F13L and A33R of monkeypox virus were detected before onset of clinical symptoms in macaques. Thus, antibodies from vaccination recognized a small number of proteins shared with pathogenic virus strains, while recovery from infection also involved humoral responses to antigens uniquely recognized within the monkeypox virus proteome.


Asunto(s)
Mpox/inmunología , Proteómica/métodos , Viruela/inmunología , Secuencia de Aminoácidos , Animales , Chlorocebus aethiops , Humanos , Inmunoglobulina G/inmunología , Inmunoglobulina M/inmunología , Macaca fascicularis , Datos de Secuencia Molecular , Monkeypox virus/inmunología , Análisis de Secuencia por Matrices de Oligonucleótidos , Proteoma , Células Vero
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...