Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Elife ; 2: e00334, 2013 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-23741615

RESUMEN

Helicases couple the chemical energy of ATP hydrolysis to directional translocation along nucleic acids and transient duplex separation. Understanding helicase mechanism requires that the basic physicochemical process of base pair separation be understood. This necessitates monitoring helicase activity directly, at high spatio-temporal resolution. Using optical tweezers with single base pair (bp) resolution, we analyzed DNA unwinding by XPD helicase, a Superfamily 2 (SF2) DNA helicase involved in DNA repair and transcription initiation. We show that monomeric XPD unwinds duplex DNA in 1-bp steps, yet exhibits frequent backsteps and undergoes conformational transitions manifested in 5-bp backward and forward steps. Quantifying the sequence dependence of XPD stepping dynamics with near base pair resolution, we provide the strongest and most direct evidence thus far that forward, single-base pair stepping of a helicase utilizes the spontaneous opening of the duplex. The proposed unwinding mechanism may be a universal feature of DNA helicases that move along DNA phosphodiester backbones. DOI:http://dx.doi.org/10.7554/eLife.00334.001.


Asunto(s)
Proteínas Arqueales/metabolismo , Replicación del ADN , ADN/metabolismo , Proteína de la Xerodermia Pigmentosa del Grupo D/metabolismo , Adenosina Trifosfato/metabolismo , Proteínas Arqueales/química , Secuencia de Bases , Simulación por Computador , ADN/química , Reparación del ADN , Hidrólisis , Cinética , Modelos Biológicos , Conformación de Ácido Nucleico , Pinzas Ópticas , ARN/biosíntesis , Procesos Estocásticos , Iniciación de la Transcripción Genética , Proteína de la Xerodermia Pigmentosa del Grupo D/química
2.
EMBO J ; 31(2): 503-14, 2012 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-22081110

RESUMEN

Structurally similar superfamily I (SF1) and II (SF2) helicases translocate on single-stranded DNA (ssDNA) with defined polarity either in the 5'-3' or in the 3'-5' direction. Both 5'-3' and 3'-5' translocating helicases contain the same motor core comprising two RecA-like folds. SF1 helicases of opposite polarity bind ssDNA with the same orientation, and translocate in opposite directions by employing a reverse sequence of the conformational changes within the motor domains. Here, using proteolytic DNA and mutational analysis, we have determined that SF2B helicases bind ssDNA with the same orientation as their 3'-5' counterparts. Further, 5'-3' translocation polarity requires conserved residues in HD1 and the FeS cluster containing domain. Finally, we propose the FeS cluster-containing domain also provides a wedge-like feature that is the point of duplex separation during unwinding.


Asunto(s)
ADN Helicasas/química , Thermoplasma/enzimología , Secuencia de Aminoácidos , Sitios de Unión , Secuencia Conservada , ADN Helicasas/clasificación , ADN Helicasas/metabolismo , ADN de Cadena Simple/química , ADN de Cadena Simple/metabolismo , Ácido Edético/análogos & derivados , Ácido Edético/química , Proteínas Hierro-Azufre/química , Modelos Moleculares , Datos de Secuencia Molecular , Movimiento (Física) , Mutagénesis Sitio-Dirigida , Unión Proteica , Conformación Proteica , Estructura Terciaria de Proteína , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Relación Estructura-Actividad
3.
Methods ; 51(3): 313-21, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20167274

RESUMEN

Many quantitative approaches for analysis of helicase-nucleic acid interactions require a robust and specific signal, which reports on the presence of the helicase and its position on a nucleic acid lattice. Since 2006, iron-sulfur (FeS) clusters have been found in a number of helicases. They serve as endogenous quenchers of Cy3 and Cy5 fluorescence which can be exploited to characterize FeS cluster containing helicases both in ensemble-based assays and at the single-molecule level. Synthetic oligonucleotides site-specifically labeled with either Cy3 or Cy5 can be used to create a variety of DNA substrates that can be used to characterized DNA binding, as well as helicase translocation and unwinding. Equilibrium binding affinities for ssDNA, duplex and branched DNA substrates can be determined using bulk assays. Identification of preferred cognate substrates, and the orientation and position of the helicase when bound to DNA can also be determined by taking advantage of the intrinsic quencher in the helicase. At the single-molecule level, real-time observation of the helicase translocating along DNA either towards the dye or away from the dye can be used to determine the rate of translocation by the helicase on ssDNA and its orientation when bound to DNA. The use of duplex substrates can reveal the rate of unwinding and processivity of the helicase. Finally, the FeS cluster can be used to visualize protein-protein interactions, and to examine the interplay between helicases and other DNA binding proteins on the same DNA substrate.


Asunto(s)
ADN Helicasas/química , ADN/química , ADN/metabolismo , Proteínas Hierro-Azufre/química , Cristalografía por Rayos X , Transferencia Resonante de Energía de Fluorescencia/métodos , Modelos Moleculares
4.
Mol Cell ; 35(5): 694-703, 2009 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-19748362

RESUMEN

An encounter between a DNA-translocating enzyme and a DNA-bound protein must occur frequently in the cell, but little is known about its outcome. Here we developed a multicolor single-molecule fluorescence approach to simultaneously monitor single-stranded DNA (ssDNA) translocation by a helicase and the fate of another protein bound to the same DNA. Distance-dependent fluorescence quenching by the iron-sulfur cluster of the archaeal XPD (Rad3) helicase was used as a calibrated proximity signal. Despite the similar equilibrium DNA-binding properties, the two cognate ssDNA-binding proteins RPA1 and RPA2 differentially affected XPD translocation. RPA1 competed with XPD for ssDNA access. In contrast, RPA2 did not interfere with XPD-ssDNA binding but markedly slowed down XPD translocation. Mechanistic models of bypassing DNA-bound proteins by the Rad3 family helicases and their biological implications are discussed.


Asunto(s)
Proteínas Arqueales/metabolismo , Reparación del ADN , ADN/metabolismo , Proteína de Replicación A/metabolismo , Proteína de la Xerodermia Pigmentosa del Grupo D/metabolismo , Adenosina Trifosfato/metabolismo , Proteínas Arqueales/química , Sitios de Unión , Carbocianinas , ADN/química , Colorantes Fluorescentes , Cinética , Modelos Moleculares , Conformación de Ácido Nucleico , Conformación Proteica , Proteína de Replicación A/química , Procesamiento de Señales Asistido por Computador , Espectrometría de Fluorescencia , Proteína de la Xerodermia Pigmentosa del Grupo D/química
5.
J Mol Biol ; 383(5): 982-98, 2008 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-18801373

RESUMEN

The strand-separation activity that is important for many cellular DNA processing machineries is provided by DNA helicases. In order to understand the physiological properties of a helicase acting in the context of its macromolecular machinery, it is imperative to identify the proteins that interact with the enzyme and to analyze how these proteins affect its helicase activities. The archaeal Rad3 helicase XPD (xeroderma pigmentosum group D protein) from Ferroplasma acidarmanus (FacXPD) is a superfamily II 5'-->3' DNA helicase. Similar to its mammalian homolog working as an integral part of the transcription factor IIH complex, FacXPD may play an important role in nucleotide excision repair (NER) and transcription initiation. Interaction between FacXPD and other archaeal NER proteins likely modulates their respective activities. Replication protein A (RPA), a single-stranded DNA (ssDNA)-binding protein, is one of the NER proteins that functionally interact with the human transcription factor IIH complex. There are two RPA proteins in F. acidarmanus: FacRPA1, a homodimer of two monomers consisting of two oligonucleotide/oligosaccharide binding folds, and FacRPA2, a monomer containing a single oligonucleotide/oligosaccharide binding fold. In this study, we analyzed the effect of these ssDNA-binding proteins on FacXPD helicase activity. We found that FacRPA2 stimulates DNA unwinding by FacXPD helicase through a novel mechanism by providing a helix-destabilizing function. In contrast, FacRPA1 fails to stimulate helicase activity to the same extent as FacRPA2 and competes with FacXPD for binding to the ssDNA-double-stranded DNA junction. We conclude that the FacRPA2-coated fork is a preferred and likely physiological substrate that a monomer of FacXPD can unwind with a processivity sufficient for expansion of the NER or transcription bubble. We also suggest that duplex melting by a cognate ssDNA-binding protein coordinated with translocation by a helicase may represent a common strategy for duplex unwinding by the Rad3 family of helicases.


Asunto(s)
Archaea/enzimología , Proteínas Arqueales/metabolismo , ADN Helicasas/metabolismo , Replicación del ADN , ADN de Archaea/metabolismo , Proteína de Replicación A/metabolismo , Huella de ADN , Proteínas de Unión al ADN/metabolismo , Cinética , Modelos Moleculares , Desnaturalización de Ácido Nucleico , Unión Proteica , Especificidad por Sustrato
6.
J Biol Chem ; 283(3): 1732-1743, 2008 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-18029358

RESUMEN

Helicases often achieve functional specificity through utilization of unique structural features incorporated into an otherwise conserved core. The archaeal Rad3 (xeroderma pigmentosum group D protein (XPD)) helicase is a prototypical member of the Rad3 family, distinct from other related (superfamily II) SF2 enzymes because of a unique insertion containing an iron-sulfur (FeS) cluster. This insertion may represent an auxiliary domain responsible for modifying helicase activity or for conferring specificity for selected DNA repair intermediates. The importance of the FeS cluster for the fine-tuning of Rad3-DNA interactions is illustrated by several clinically relevant point mutations in the FeS domain of human Bach1 (FancJ) and XPD helicases that result in distinct disease phenotypes. Here we analyzed the substrate specificity of the Rad3 (XPD) helicase from Ferroplasma acidarmanus (FacRad3) and probed the importance of the FeS cluster for Rad3-DNA interactions. We found that the FeS cluster stabilizes secondary structure of the auxiliary domain important for coupling of single-stranded (ss) DNA-dependent ATP hydrolysis to ssDNA translocation. Additionally, we observed specific quenching of the Cy5 fluorescent dye when the FeS cluster of a bound helicase is positioned in close proximity to a Cy5 fluorophore incorporated into the DNA molecule. Taking advantage of this Cy5 quenching, we developed an equilibrium assay for analysis of the Rad3 interactions with various DNA substrates. We determined that the FeS cluster-containing domain recognizes the ssDNA-double-stranded DNA junction and positions the helicase in an orientation consistent with duplex unwinding. Although it interacts specifically with the junction, the enzyme binds tightly to ssDNA, and the single-stranded regions of the substrate are the major contributors to the energetics of FacRad3-substrate interactions.


Asunto(s)
Adenosina Trifosfato/metabolismo , Archaea/enzimología , Proteínas Arqueales/química , Proteínas Arqueales/metabolismo , ADN Helicasas/química , ADN Cruciforme/metabolismo , ADN de Cadena Simple/metabolismo , Adenosina Trifosfatasas/metabolismo , Sustitución de Aminoácidos , Transporte Biológico , Replicación del ADN , Hidrólisis , Proteínas Hierro-Azufre/metabolismo , Ligandos , Proteínas Mutantes/metabolismo , Mutación/genética , Unión Proteica , Estructura Terciaria de Proteína , Relación Estructura-Actividad , Especificidad por Sustrato , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...