Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
J Exp Clin Cancer Res ; 43(1): 194, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39014480

RESUMEN

Continued exploration of the androgen receptor (AR) is crucial, as it plays pivotal roles in diverse diseases such as prostate cancer (PCa), serving as a significant therapeutic focus. Therefore, the Department of Urology Dresden hosted an international meeting for scientists and clinical oncologists to discuss the newest advances in AR research. The 2nd International Androgen Receptor Symposium was held in Dresden, Saxony, Germany, from 26-27.04.2024, organised by Dr. Holger H.H. Erb. Following the format of the first meeting, more than 35 scientists from 8 countries attended the event to discuss recent developments, research challenges, and identification of venues in AR research. An important new feature was the involvement of PhD students and young investigators, acknowledging the high scientific quality of their work. The symposium included three covers: new advances from clinical research, basic and translational research, and novel strategies to target AR. Moreover, based on its increasing clinical relevance, a PSMA theranostic mini-symposium was added at the end of the AR symposium to allow the audience to discuss the newest advances in PSMA theranostic. This report focuses on the highlights and discussions of the meeting.


Asunto(s)
Neoplasias de la Próstata , Receptores Androgénicos , Humanos , Masculino , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/terapia , Neoplasias de la Próstata/genética , Receptores Androgénicos/metabolismo , Receptores Androgénicos/genética
2.
Eur Urol Oncol ; 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38851995

RESUMEN

BACKGROUND AND OBJECTIVE: While collagen density has been associated with poor outcomes in various cancers, its role in prostate cancer (PCa) remains elusive. Our aim was to analyze collagen-related transcriptomic, proteomic, and urinome alterations in the context of detection of clinically significant PCa (csPCa, International Society of Urological Pathology [ISUP] grade group ≥2). METHODS: Comprehensive analyses for PCa transcriptome (n = 1393), proteome (n = 104), and urinome (n = 923) data sets focused on 55 collagen-related genes. Investigation of the cellular source of collagen-related transcripts via single-cell RNA sequencing was conducted. Statistical evaluations, clustering, and machine learning models were used for data analysis to identify csPCa signatures. KEY FINDINGS AND LIMITATIONS: Differential expression of 30 of 55 collagen-related genes and 34 proteins was confirmed in csPCa in comparison to benign prostate tissue or ISUP 1 cancer. A collagen-high cancer cluster exhibited distinct cellular and molecular characteristics, including fibroblast and endothelial cell infiltration, intense extracellular matrix turnover, and enhanced growth factor and inflammatory signaling. Robust collagen-based machine learning models were established to identify csPCa. The models outcompeted prostate-specific antigen (PSA) and age, showing comparable performance to multiparametric magnetic resonance imaging (mpMRI) in predicting csPCa. Of note, the urinome-based collagen model identified four of five csPCa cases among patients with Prostate Imaging-Reporting and Data System (PI-IRADS) 3 lesions, for which the presence of csPCa is considered equivocal. The retrospective character of the study is a limitation. CONCLUSIONS AND CLINICAL IMPLICATIONS: Collagen-related transcriptome, proteome, and urinome signatures exhibited superior accuracy in detecting csPCa in comparison to PSA and age. The collagen signatures, especially in cases of ambiguous lesions on mpMRI, successfully identified csPCa and could potentially reduce unnecessary biopsies. The urinome-based collagen signature represents a promising liquid biopsy tool that requires prospective evaluation to improve the potential of this collagen-based approach to enhance diagnostic precision in PCa for risk stratification and guiding personalized interventions. PATIENT SUMMARY: In our study, collagen-related alterations in tissue, and urine were able to predict the presence of clinically significant prostate cancer at primary diagnosis.

3.
Oncogene ; 43(26): 2038-2050, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38750263

RESUMEN

Docetaxel (DX) serves as a palliative treatment option for metastatic prostate cancer (PCa). Despite initial remission, acquired DX resistance is inevitable. The mechanisms behind DX resistance have not yet been deciphered, but a mesenchymal phenotype is associated with DX resistance. Mesenchymal phenotypes have been linked to metabolic rewiring, obtaining most ATP production by oxidative phosphorylation (OXPHOS) powered substantially by glutamine (Gln). Likewise, Gln is known to play an essential role in modulating bioenergetic, redox homeostasis and autophagy. Herein, investigations of Gln deprivation on DX-sensitive and -resistant (DR) PCa cells revealed that the DR cell sub-lines were susceptible to Gln deprivation. Mechanistically, Gln deprivation reduced OXPHOS and ATP levels, causing a disturbance in cell cycle progression. Genetic and chemical inhibition of the Gln-metabolism key protein GLS1 could validate the Gln deprivation results, thereby representing a valid therapeutic target. Moreover, immunohistological investigation of GLS1 revealed a high-expressing GLS1 subgroup post-docetaxel failure, exhibiting low overall survival. This subgroup presents an intriguing opportunity for targeted therapy focusing on glutamine metabolism. Thus, these findings highlight a possible clinical rationale for the chemical inhibition of GLS1 as a therapeutic strategy to target mesenchymal DR PCa cells, thereby delaying accelerated tumour progression.


Asunto(s)
Proliferación Celular , Docetaxel , Resistencia a Antineoplásicos , Glutamina , Neoplasias de la Próstata , Masculino , Humanos , Glutamina/metabolismo , Docetaxel/farmacología , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/genética , Proliferación Celular/efectos de los fármacos , Línea Celular Tumoral , Fosforilación Oxidativa/efectos de los fármacos , Glutaminasa/metabolismo , Glutaminasa/antagonistas & inhibidores , Glutaminasa/genética , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico
4.
J Transl Med ; 22(1): 71, 2024 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-38238739

RESUMEN

The androgen receptor (AR) is a crucial player in various aspects of male reproduction and has been associated with the development and progression of prostate cancer (PCa). Therefore, the protein is the linchpin of current PCa therapies. Despite great research efforts, the AR signaling pathway has still not been deciphered, and the emergence of resistance is still the biggest problem in PCa treatment. To discuss the latest developments in AR research, the "1st International Androgen Receptor Symposium" offered a forum for the exchange of clinical and scientific innovations around the role of the AR in prostate cancer (PCa) and to stimulate new collaborative interactions among leading scientists from basic, translational, and clinical research. The symposium included three sessions covering preclinical studies, prognostic and diagnostic biomarkers, and ongoing prostate cancer clinical trials. In addition, a panel discussion about the future direction of androgen deprivation therapy and anti-AR therapy in PCa was conducted. Therefore, the newest insights and developments in therapeutic strategies and biomarkers are discussed in this report.


Asunto(s)
Neoplasias de la Próstata Resistentes a la Castración , Neoplasias de la Próstata , Masculino , Humanos , Receptores Androgénicos/metabolismo , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Antagonistas de Andrógenos/uso terapéutico , Transducción de Señal , Biomarcadores
5.
Cell Rep Med ; 5(2): 101388, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38262412

RESUMEN

Docetaxel is the most commonly used chemotherapy for advanced prostate cancer (PC), including castration-resistant disease (CRPC), but the eventual development of docetaxel resistance constitutes a major clinical challenge. Here, we demonstrate activation of the cholinergic muscarinic M1 receptor (CHRM1) in CRPC cells upon acquiring resistance to docetaxel, which is manifested in tumor tissues from PC patients post- vs. pre-docetaxel. Genetic and pharmacological inactivation of CHRM1 restores the efficacy of docetaxel in resistant cells. Mechanistically, CHRM1, via its first and third extracellular loops, interacts with the SEMA domain of cMET and forms a heteroreceptor complex with cMET, stimulating a downstream mitogen-activated protein polykinase program to confer docetaxel resistance. Dicyclomine, a clinically available CHRM1-selective antagonist, reverts resistance and restricts the growth of multiple docetaxel-resistant CRPC cell lines and patient-derived xenografts. Our study reveals a CHRM1-dictated mechanism for docetaxel resistance and identifies a CHRM1-targeted combinatorial strategy for overcoming docetaxel resistance in PC.


Asunto(s)
Neoplasias de la Próstata Resistentes a la Castración , Receptor Muscarínico M1 , Masculino , Humanos , Docetaxel/farmacología , Docetaxel/uso terapéutico , Receptor Muscarínico M1/genética , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Neoplasias de la Próstata Resistentes a la Castración/genética , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Línea Celular Tumoral , Colinérgicos/uso terapéutico
6.
Oncogene ; 43(4): 235-247, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38017134

RESUMEN

Despite significant therapeutic advances in recent years, treatment of metastatic prostate cancer (PCa) remains palliative, owing to the inevitable occurrence of drug resistance. There is increasing evidence that epithelial glucocorticoid receptor (GR) signaling and changes in the tumor-microenvironment (TME) play important roles in this process. Since glucocorticoids (GCs) are used as concomitant medications in the course of PCa treatment, it is essential to investigate the impact of GCs on stromal GR signaling in the TME. Therefore, general GR mRNA and protein expression was assessed in radical prostatectomy specimens and metastatic lesions. Elevated stromal GR signaling after GC treatment resulted in altered GR-target gene, soluble protein expression, and in a morphology change of immortalized and primary isolated cancer-associated fibroblasts (CAFs). Subsequently, these changes affected proliferation, colony formation, and 3D-spheroid growth of multiple epithelial PCa cell models. Altered expression of extra-cellular matrix (ECM) and adhesion-related proteins led to an ECM remodeling. Notably, androgen receptor pathway inhibitor treatments did not affect CAF viability. Our findings demonstrate that GC-mediated elevated GR signaling has a major impact on the CAF secretome and the ECM architecture. GC-treated fibroblasts significantly influence epithelial tumor cell growth and must be considered in future therapeutic strategies.


Asunto(s)
Fibroblastos Asociados al Cáncer , Neoplasias de la Próstata , Masculino , Humanos , Glucocorticoides/farmacología , Glucocorticoides/uso terapéutico , Glucocorticoides/metabolismo , Próstata/patología , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Microambiente Tumoral , Línea Celular Tumoral , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Fibroblastos/metabolismo , Fibroblastos Asociados al Cáncer/metabolismo
7.
Am J Pathol ; 194(3): 324-334, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38104650

RESUMEN

Endocrine therapy for prostate cancer is based on the use of drugs that diminish androgen concentration and androgen receptor (AR) signaling inhibitors and is limited by the functional consequences of AR point mutations and increased expression of constitutively active receptors. Many coactivators (>280) interact with different AR regions. Most studies have determined the expression of coactivators and their effects in the presence of increasing concentrations of androgen or the antiandrogen enzalutamide. The p160 group of coactivators (SRC-1, SRC-2, and SRC-3) is highly expressed in prostate cancer and contributes to ligand-dependent activation of the receptor in models that represent therapy-sensitive and therapy-resistant cell lines. The transcriptional coactivators p300 and CREB-binding protein (CBP) are implicated in the regulation of a large number of cellular events, such as proliferation, apoptosis, migration, and invasion. AR coactivators also may predict biochemical and clinical recurrence. The AR coactivator expression, which is enhanced in enzalutamide resistance, includes growth regulating estrogen receptor binding 1 (GREB1) and GATA-binding protein 2 (GATA2). Several coactivators also activate AR-unrelated signaling pathways, such as those of insulin-like growth factors, which inhibit apoptosis in cancer cells. They are expressed in multiple models of resistance to therapy and can be targeted by various inhibitors in vitro and in vivo. The role of the glucocorticoid receptor in endocrine therapy-resistant prostate cancer has been documented previously. Specific coactivators may interact with the glucocorticoid receptor, thus contributing to therapy failure.


Asunto(s)
Andrógenos , Benzamidas , Nitrilos , Feniltiohidantoína , Neoplasias de la Próstata , Masculino , Humanos , Andrógenos/metabolismo , Receptores Androgénicos/genética , Receptores Androgénicos/metabolismo , Receptores de Glucocorticoides , Histona Acetiltransferasas , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/genética , Línea Celular Tumoral
8.
Artículo en Inglés | MEDLINE | ID: mdl-37634036

RESUMEN

BACKGROUND: Abiraterone (Abi) is an androgen receptor signaling inhibitor that significantly improves patients' life expectancy in metastatic prostate cancer (PCa). Despite its beneficial effects, many patients have baseline or acquired resistance against Abi. The aim of this study was to identify predictive serum biomarkers for Abi treatment. METHODS: We performed a comparative proteome analysis on three Abi sensitive (LNCaPabl, LAPC4, DuCaP) and resistant (LNCaPabl-Abi, LAPC4-Abi, DuCaP-Abi) PCa cell lines using liquid chromatography tandem mass spectrometry (LC-MS/MS) technique. Two bioinformatic selection workflows were applied to select the most promising candidate serum markers. Serum levels of selected proteins were assessed in samples of 100 Abi-treated patients with metastatic castration-resistant disease (mCRPC) using ELISA. Moreover, FSCN1 serum concentrations were measured in samples of 69 Docetaxel (Doc) treated mCRPC patients. RESULTS: Our proteome analysis identified 68 significantly, at least two-fold upregulated proteins in Abi resistant cells. Using two filtering workflows four proteins (AMACR, KLK2, FSCN1 and CTAG1A) were selected for ELISA analyses. We found high baseline FSCN1 serum levels to be significantly associated with poor survival in Abi-treated mCRPC patients. Moreover, the multivariable analysis revealed that higher ECOG status (>1) and high baseline FSCN1 serum levels (>10.22 ng/ml by ROC cut-off) were independently associated with worse survival in Abi-treated patients (p < 0.001 and p = 0.021, respectively). In contrast, no association was found between serum FSCN1 concentrations and overall survival in Doc-treated patients. CONCLUSIONS: Our analysis identified baseline FSCN1 serum levels to be independently associated with poor survival of Abi-treated, but not Doc-treated mCRPC patients, suggesting a therapy specific prognostic value for FSCN1.

9.
Am J Pathol ; 193(9): 1284-1297, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37301535

RESUMEN

The atypical protein kinase/ATPase RIO kinase (RIOK)-1 is involved in pre-40S ribosomal subunit production, cell-cycle progression, and protein arginine N-methyltransferase 5 methylosome substrate recruitment. RIOK1 overexpression is a characteristic of several malignancies and is correlated with cancer stage, therapy resistance, poor patient survival, and other prognostic factors. However, its role in prostate cancer (PCa) is unknown. In this study, the expression, regulation, and therapeutic potential of RIOK1 in PCa were examined. RIOK1 mRNA and protein expression were elevated in PCa tissue samples and correlated with proliferative and protein homeostasis-related pathways. RIOK1 was identified as a downstream target gene of the c-myc/E2F transcription factors. Proliferation of PCa cells was significantly reduced with RIOK1 knockdown and overexpression of the dominant-negative RIOK1-D324A mutant. Biochemical inhibition of RIOK1 with toyocamycin led to strong antiproliferative effects in androgen receptor-negative and -positive PCa cell lines with EC50 values of 3.5 to 8.8 nmol/L. Rapid decreases in RIOK1 protein expression and total rRNA content, and a shift in the 28S/18S rRNA ratio, were found with toyocamycin treatment. Apoptosis was induced with toyocamycin treatment at a level similar to that with the chemotherapeutic drug docetaxel used in clinical practice. In summary, the current study indicates that RIOK1 is a part of the MYC oncogene network, and as such, could be considered for future treatment of patients with PCa.


Asunto(s)
Genes myc , Neoplasias de la Próstata , Masculino , Humanos , Proteínas Quinasas/genética , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfatasas/farmacología , Toyocamicina/farmacología , Toyocamicina/uso terapéutico , Proliferación Celular , Neoplasias de la Próstata/patología , Factores de Transcripción E2F/genética , Factores de Transcripción E2F/metabolismo , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica
10.
J Cancer Res Clin Oncol ; 149(5): 2259-2270, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36151426

RESUMEN

Metabolic reprogramming has been recognised as a hallmark in solid tumours. Malignant modification of the tumour's bioenergetics provides energy for tumour growth and progression. Otto Warburg first reported these metabolic and biochemical changes in 1927. In prostate cancer (PCa) epithelial cells, the tumour metabolism also changes during development and progress. These alterations are partly driven by the androgen receptor, the key regulator in PCa development, progress, and survival. In contrast to other epithelial cells of different entities, glycolytic metabolism in prostate cells sustains physiological citrate secretion in the normal prostatic epithelium. In the early stages of PCa, citrate is utilised to power oxidative phosphorylation and fuel lipogenesis, enabling tumour growth and progression. In advanced and incurable castration-resistant PCa, a metabolic shift towards choline, amino acid, and glycolytic metabolism fueling tumour growth and progression has been described. Therefore, even if the metabolic changes are not fully understood, the altered metabolism during tumour progression may provide opportunities for novel therapeutic strategies, especially in advanced PCa stages. This review focuses on the main differences in PCa's metabolism during tumourigenesis and progression highlighting glutamine's role in PCa.


Asunto(s)
Neoplasias de la Próstata Resistentes a la Castración , Neoplasias de la Próstata , Masculino , Humanos , Neoplasias de la Próstata/patología , Receptores Androgénicos/metabolismo , Próstata/patología , Metabolismo Energético , Glucólisis , Citratos/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/patología
11.
Cells ; 11(24)2022 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-36552790

RESUMEN

Cancer progression is supported by the cross-talk between tumor cells and the surrounding stroma. In this context, senescent cells in the tumor microenvironment contribute to the development of a pro-inflammatory milieu and the acquisition of aggressive traits by cancer cells. Anticancer treatments induce cellular senescence (therapy-induced senescence, TIS) in both tumor and non-cancerous cells, contributing to many detrimental side effects of therapies. Thus, we focused on the effects of chemotherapy on the stromal compartment of prostate and ovarian cancer. We demonstrated that anticancer chemotherapeutics, regardless of their specific mechanism of action, promote a senescent phenotype in stromal fibroblasts, resulting in metabolic alterations and secretion of paracrine factors, sustaining the invasive and clonogenic potential of both prostate and ovarian cancer cells. The clearance of senescent stromal cells, through senolytic drug treatment, reverts the malignant phenotype of tumor cells. The clinical relevance of TIS was validated in ovarian and prostate cancer patients, highlighting increased accumulation of lipofuscin aggregates, a marker of the senescent phenotype, in the stromal compartment of tissues from chemotherapy-treated patients. These data provide new insights into the potential efficacy of combining traditional anticancer strategies with innovative senotherapy to potentiate anticancer treatments and overcome the adverse effects of chemotherapy.


Asunto(s)
Neoplasias Ováricas , Neoplasias de la Próstata , Humanos , Masculino , Femenino , Neoplasias Ováricas/genética , Próstata/patología , Neoplasias de la Próstata/tratamiento farmacológico , Fenotipo , Microambiente Tumoral
12.
Int J Cancer ; 151(8): 1405-1419, 2022 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-35689436

RESUMEN

Enzalutamide (ENZA) is a frequently used therapy in metastatic castration-resistant prostate cancer (mCRPC). Baseline or acquired resistance to ENZA have been observed, but the molecular mechanisms of resistance are poorly understood. We aimed to identify proteins involved in ENZA resistance and to find therapy-predictive serum markers. We performed comparative proteome analyses on ENZA-sensitive parental (LAPC4, DuCaP) and -resistant prostate cancer cell lines (LAPC4-ENZA, DuCaP-ENZA) using liquid chromatography tandem mass spectrometry (LC-MS/MS). The top four most promising candidate markers were selected using bioinformatic approaches. Serum concentrations of selected markers (ALCAM, AGR2, NDRG1, IDH1) were measured in pretreatment samples of 72 ENZA-treated mCRPC patients using ELISA. In addition, ALCAM serum levels were measured in 101 Abiraterone (ABI) and 100 Docetaxel (DOC)-treated mCRPC patients' baseline samples. Results were correlated with clinical and follow-up data. The functional role of ALCAM in ENZA resistance was assessed in vitro using siRNA. Our proteome analyses revealed 731 significantly differentially abundant proteins between ENZA-sensitive and -resistant cells and our filtering methods identified four biomarker candidates. Serum analyses of these proteins revealed only ALCAM to be associated with poor patient survival. Furthermore, higher baseline ALCAM levels were associated with poor survival in ABI- but not in DOC-treated patients. In LAPC4-ENZA resistant cells, ALCAM silencing by siRNA knockdown resulted in significantly enhanced ENZA sensitivity. Our analyses revealed that ALCAM serum levels may help to identify ENZA- and ABI-resistant patients and may thereby help to optimize future clinical decision-making. Our functional analyses suggest the possible involvement of ALCAM in ENZA resistance.


Asunto(s)
Molécula de Adhesión Celular del Leucocito Activado , Moléculas de Adhesión Celular Neuronal , Resistencia a Antineoplásicos , Neoplasias de la Próstata Resistentes a la Castración , Molécula de Adhesión Celular del Leucocito Activado/genética , Antígenos CD/genética , Benzamidas , Moléculas de Adhesión Celular Neuronal/genética , Línea Celular , Cromatografía Liquida , Docetaxel/uso terapéutico , Proteínas Fetales/genética , Humanos , Masculino , Nitrilos/uso terapéutico , Feniltiohidantoína , Antígeno Prostático Específico , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Neoplasias de la Próstata Resistentes a la Castración/genética , Proteoma , ARN Interferente Pequeño , Espectrometría de Masas en Tándem , Resultado del Tratamiento
13.
Am J Pathol ; 192(9): 1321-1335, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35750257

RESUMEN

Toll-like receptor 3 (TLR3) is an endosomal receptor expressed in several immune and epithelial cells. Recent studies have highlighted its expression also in solid tumors, including prostate cancer (PCa), and have described its role primarily in the proinflammatory response and induction of apoptosis. It is up-regulated in some castration-resistant prostate cancers. However, the role of TLR3 in prostate cancer progression remains largely unknown. The current study experimentally demonstrated that exogenous TLR3 activation in PCa cell lines leads to a significant induction of secretion of the cytokines IL-6, IL-8, and interferon-ß, depending on the model and chemoresistance status. Transcriptomic analysis of TLR3-overexpressing cells revealed a functional program that is enriched for genes involved in the regulation of cell motility, migration, and tumor invasiveness. Increased motility, migration, and invasion in TLR3-overexpressing cell line were confirmed by several in vitro assays and using an orthotopic prostate xenograft model in vivo. Furthermore, TLR3-ligand induced apoptosis via cleavage of caspase-3/7 and poly (ADP-ribose) polymerase, predominantly in TLR3-overexpressing cells. These results indicate that TLR3 may be involved in prostate cancer progression and metastasis; however, it might also represent an Achilles heel of PCa, which can be exploited for targeted therapy.


Asunto(s)
Neoplasias de la Próstata , Receptor Toll-Like 3 , Animales , Apoptosis , Línea Celular Tumoral , Humanos , Masculino , Poli I-C/farmacología , Próstata/patología , Neoplasias de la Próstata/patología , Receptor Toll-Like 3/genética , Receptor Toll-Like 3/metabolismo
14.
Front Oncol ; 12: 789284, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35198441

RESUMEN

Novel therapeutic strategies are urgently needed for advanced metastatic prostate cancer (PCa). Phytochemicals used in Traditional Chinese Medicine seem to exhibit tumor suppressive properties. Therefore, the therapeutic potential of artesunate (ART) on the progressive growth of therapy-sensitive (parental) and docetaxel (DX)-resistant PCa cells was investigated. Parental and DX-resistant PCa cell lines DU145, PC3, and LNCaP were incubated with artesunate (ART) [1-100 µM]. ART-untreated and 'non-cancerous' cells served as controls. Cell growth, proliferation, cell cycle progression, cell death and the expression of involved proteins were evaluated. ART, dose- and time-dependently, significantly restricted cell growth and proliferation of parental and DX-resistant PCa cells, but not of 'normal, non-cancerous' cells. ART-induced growth and proliferation inhibition was accompanied by G0/G1 phase arrest and down-regulation of cell cycle activating proteins in all DX-resistant PCa cells and parental LNCaP. In the parental and DX-resistant PC3 and LNCaP cell lines, ART also promoted apoptotic cell death. Ferroptosis was exclusively induced by ART in parental and DX-resistant DU145 cells by increasing reactive oxygen species (ROS). The anti-cancer activity displayed by ART took effect in all three PCa cell lines, but through different mechanisms of action. Thus, in advanced PCa, ART may hold promise as a complementary treatment together with conventional therapy.

15.
J Cell Mol Med ; 26(4): 1332-1337, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34970839

RESUMEN

Baseline or acquired resistance to docetaxel (DOC) represents a significant risk for patients with metastatic prostate cancer (PC). In the last years, novel therapy regimens have been approved providing reasonable alternatives for DOC-resistant patients making prediction of DOC resistance of great clinical importance. We aimed to identify serum biomarkers, which are able to select patients who will not benefit from DOC treatment. DOC-resistant PC3-DR and DU145-DR sublines and their sensitive parental cell lines (DU145, PC3) were comparatively analyzed using liquid chromatography-coupled tandem mass spectrometry (LC-MS/MS). Results were filtered using bioinformatics approaches to identify promising serum biomarkers. Serum levels of five proteins were determined in serum samples of 66 DOC-treated metastatic castration-resistant PC patients (mCRPC) using ELISA. Results were correlated with clinicopathological and survival data. CD44 was subjected to further functional cell culture analyses. We found at least 177 two-fold significantly overexpressed proteins in DOC-resistant cell lines. Our bioinformatics method suggested 11/177 proteins to be secreted into the serum. We determined serum levels of five (CD44, MET, GSN, IL13RA2 and LNPEP) proteins in serum samples of DOC-treated patients and found high CD44 serum levels to be independently associated with poor overall survival (p = 0.001). In accordance, silencing of CD44 in DU145-DR cells resulted in re-sensitization to DOC. In conclusion, high serum CD44 levels may help identify DOC-resistant patients and may thereby help optimize clinical decision-making regarding type and timing of therapy for mCRPC patients. In addition, our in vitro results imply the possible functional involvement of CD44 in DOC resistance.


Asunto(s)
Antineoplásicos , Neoplasias de la Próstata Resistentes a la Castración , Antineoplásicos/farmacología , Biomarcadores , Cromatografía Liquida , Docetaxel/farmacología , Docetaxel/uso terapéutico , Resistencia a Antineoplásicos/genética , Humanos , Receptores de Hialuranos/genética , Masculino , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Neoplasias de la Próstata Resistentes a la Castración/genética , Proteoma , Espectrometría de Masas en Tándem
16.
Oncogene ; 40(17): 3087-3100, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33795839

RESUMEN

Despite increasing options for treatment of castration-resistant prostate cancer, development of drug resistance is inevitable. The glucocorticoid receptor (GR) is a prime suspect for acquired therapy resistance, as prostate cancer (PCa) cells are able to increase GR signaling during anti-androgen therapy and thereby circumvent androgen receptor (AR)-blockade and cell death. As standard AR-directed therapies fail to block the GR and GR inhibitors might result in intolerable side effects, the identification of GR signature genes, which are better suited for a targeted approach, is of clinical importance. Therefore, the specific epithelial and stromal GR signature was determined in cancer-associated fibroblasts as well as in abiraterone and enzalutamide-resistant cells after glucocorticoid (GC) treatment. Microarray and ChIP analysis identified MAO-A as a directly up-regulated mutual epithelial and stromal GR target, which is induced after GC treatment and during PCa progression. Elevated MAO-A levels were confirmed in in vitro cell models, in primary tissue cultures after GC treatment, and in patients after neoadjuvant chemotherapy with GCs. MAO-A expression correlates with GR/AR activity as well as with a reduced progression-free survival. Pharmacological MAO-A inhibition combined with 2nd generation AR signaling inhibitors or chemotherapeutics results in impaired growth of androgen-dependent, androgen-independent, and long-term anti-androgen-treated cells. In summary, these findings demonstrate that targeting MAO-A represents an innovative therapeutic strategy to synergistically block GR and AR dependent PCa cell growth and thereby overcome therapy resistance.


Asunto(s)
Neoplasias de la Próstata Resistentes a la Castración , Receptores de Glucocorticoides , Antagonistas de Receptores Androgénicos , Resistencia a Antineoplásicos , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Receptores Androgénicos
17.
Am J Pathol ; 191(6): 1094-1107, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33705753

RESUMEN

Patients with advanced prostate cancer are frequently treated with the antiandrogen enzalutamide. However, resistance eventually develops in virtually all patients, and various mechanisms have been associated with this process. The histone acetyltransferases EP300 and CREBBP are involved in regulation of cellular events in advanced prostate cancer. This study investigated the role of EP300/CREBBP inhibitors in enzalutamide-resistant prostate cancer. EP300/CREBBP inhibitors led to the same inhibition of androgen receptor activity in enzalutamide-resistant and -sensitive cells. However, enzalutamide-resistant cells were more sensitive to these inhibitors in viability assays. As indicated by the RNA-sequencing-based pathway analysis, genes related to the ribosome and MYC activity were significantly altered upon EP300/CREBBP inhibitor treatment. EP300/CREBBP inhibitors led to the down-regulation of ribosomal proteins RPL36 and RPL29. High-level ribosomal proteins amplifications and MYC amplifications were observed in castration-resistant prostate cancer samples of the publicly available Stand Up to Cancer data set. An inhibitor of RNA polymerase I-mediated transcription was used to evaluate the functional implications of these findings. The enzalutamide-resistant cell lines were more sensitive to this treatment. In addition, the migration rate of enzalutamide-resistant cells was strongly inhibited by this treatment. Taken together, the current data show that EP300/CREBBP inhibitors affect the MYC/ribosomal protein axis in enzalutamide-resistant cells and may have promising therapeutic implications.


Asunto(s)
Proteína de Unión a CREB/metabolismo , Resistencia a Antineoplásicos/fisiología , Proteína p300 Asociada a E1A/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteínas Ribosómicas/metabolismo , Antagonistas de Andrógenos , Benzamidas , Regulación Neoplásica de la Expresión Génica/fisiología , Humanos , Masculino , Nitrilos , Feniltiohidantoína
18.
Mol Oncol ; 14(10): 2487-2503, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32579780

RESUMEN

As treatment options for patients with incurable metastatic castration-resistant prostate cancer (mCRPC) are considerably limited, novel effective therapeutic options are needed. Checkpoint kinase 1 (CHK1) is a highly conserved protein kinase implicated in the DNA damage response (DDR) pathway that prevents the accumulation of DNA damage and controls regular genome duplication. CHK1 has been associated with prostate cancer (PCa) induction, progression, and lethality; hence, CHK1 inhibitors SCH900776 (also known as MK-8776) and the more effective SCH900776 analog MU380 may have clinical applications in the therapy of PCa. Synergistic induction of DNA damage with CHK1 inhibition represents a promising therapeutic approach that has been tested in many types of malignancies, but not in chemoresistant mCRPC. Here, we report that such therapeutic approach may be exploited using the synergistic action of the antimetabolite gemcitabine (GEM) and CHK1 inhibitors SCH900776 and MU380 in docetaxel-resistant (DR) mCRPC. Given the results, both CHK1 inhibitors significantly potentiated the sensitivity to GEM in a panel of chemo-naïve and matched DR PCa cell lines under 2D conditions. MU380 exhibited a stronger synergistic effect with GEM than clinical candidate SCH900776. MU380 alone or in combination with GEM significantly reduced spheroid size and increased apoptosis in all patient-derived xenograft 3D cultures, with a higher impact in DR models. Combined treatment induced premature mitosis from G1 phase resulting in the mitotic catastrophe as a prestage of apoptosis. Finally, treatment by MU380 alone, or in combination with GEM, significantly inhibited tumor growth of both PC339-DOC and PC346C-DOC xenograft models in mice. Taken together, our data suggest that metabolically robust and selective CHK1 inhibitor MU380 can bypass docetaxel resistance and improve the effectiveness of GEM in DR mCRPC models. This approach might allow for dose reduction of GEM and thereby minimize undesired toxicity and may represent a therapeutic option for patients with incurable DR mCRPC.


Asunto(s)
Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/antagonistas & inhibidores , Desoxicitidina/análogos & derivados , Docetaxel/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , Mitosis , Piperidinas/farmacología , Neoplasias de la Próstata/patología , Pirazoles/farmacología , Pirimidinas/farmacología , Animales , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/metabolismo , Desoxicitidina/farmacología , Humanos , Masculino , Ratones SCID , Mitosis/efectos de los fármacos , Piperidinas/química , Pirazoles/química , Pirimidinas/química , Fase S/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto , Gemcitabina
19.
Endocr Relat Cancer ; 27(3): 187-198, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31951590

RESUMEN

Administration of the microtubule inhibitor docetaxel is a common treatment for metastatic castration-resistant prostate cancer (mCRPC) and results in prolonged patient overall survival. Usually, after a short period of time chemotherapy resistance emerges and there is urgent need to find new therapeutic targets to overcome therapy resistance. The lysine-acetyltransferase p300 has been correlated to prostate cancer (PCa) progression. Here, we aimed to clarify a possible function of p300 in chemotherapy resistance and verify p300 as a target in chemoresistant PCa. Immunohistochemistry staining of tissue samples revealed significantly higher p300 protein expression in patients who received docetaxel as a neoadjuvant therapy compared to control patients. Elevated p300 expression was confirmed by analysis of publicly available patient data, where significantly higher p300 mRNA expression was found in tissue of mCRPC tumors of docetaxel-treated patients. Consistently, docetaxel-resistant PCa cells showed increased p300 protein expression compared to docetaxel-sensitive counterparts. Docetaxel treatment of PCa cells for 72 h resulted in elevated p300 expression. shRNA-mediated p300 knockdown did not alter colony formation efficiency in docetaxel-sensitive cells, but significantly reduced clonogenic potential of docetaxel-resistant cells. Downregulation of p300 in docetaxel-resistant cells also impaired cell migration and invasion. Taken together, we showed that p300 is upregulated by docetaxel, and our findings suggest that p300 is a possible co-target in treatment of chemoresistant PCa.


Asunto(s)
Docetaxel/uso terapéutico , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Factores de Transcripción p300-CBP/fisiología , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Resistencia a Antineoplásicos , Humanos , Masculino , Neoplasias de la Próstata Resistentes a la Castración/patología , Regulación hacia Arriba , Factores de Transcripción p300-CBP/análisis , Factores de Transcripción p300-CBP/antagonistas & inhibidores , Factores de Transcripción p300-CBP/genética
20.
Int J Med Sci ; 16(1): 115-124, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30662335

RESUMEN

Background: The magic roundabout receptor 4 (Robo 4) is a tumor endothelial marker expressed in the vascular network of various tumor entities. However, the role of Robo 4 in prostate cancer (PCa), the second common cause of cancer death among men in -developed countries, has not been described yet. Thus, the present study investigates for the first time the impact of Robo 4 in PCa both in the clinical setting and in vitro. Methods and Results: Immunohistochemical analyses of benign and malignant prostate tissue samples of 95 PCa patients, who underwent radical prostatectomy (RPE), revealed a significant elevated expression of Robo 4 as well as its ligand Slit 2 protein in cancerous tissue compared to benign. Moreover, increased Robo 4 expression was associated with higher Gleason score and pT stage. In advanced stage we observed a hypothesis-generating trend that high Robo 4 and Slit 2 expression is associated with delayed development of tumor recurrence compared to patients with low Robo 4 and Slit 2 expression, respectively. In contrast to so far described exclusive expression of Robo 4 in the tumor vascular network, our analyses showed that in PCa Robo 4 is not only expressed in the tumor stroma but also in cancer epithelial cells. This finding was also confirmed in vitro as PC3 PCa cells express Robo 4 on mRNA as well as protein level. Overexpression of Robo 4 in PC3 as well as in Robo 4 negative DU145 and LNCaP PCa cells was associated with a significant decrease in cell-proliferation and cell-viability. Conclusion: In summary we observed that Robo 4 plays a considerable role in PCa development as it is expressed in cancer epithelial cells as well as in the surrounding tumor stroma. Moreover, higher histological tumor grade was associated with increased Robo 4 expression; controversially patients with high Robo 4 tend to exert lower biochemical recurrence possibly reflecting a protective role of Robo 4.


Asunto(s)
Péptidos y Proteínas de Señalización Intercelular/biosíntesis , Proteínas del Tejido Nervioso/biosíntesis , Neoplasias de la Próstata , Receptores de Superficie Celular/biosíntesis , Anciano , Línea Celular Tumoral , Proliferación Celular , Supervivencia Celular , Humanos , Masculino , Persona de Mediana Edad , Recurrencia Local de Neoplasia , Neovascularización Patológica , Pronóstico , Neoplasias de la Próstata/irrigación sanguínea , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...