Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biol Rev Camb Philos Soc ; 98(5): 1564-1582, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37157976

RESUMEN

Fighting insect pests is a major challenge for agriculture worldwide, and biological control and integrated pest management constitute well-recognised, cost-effective ways to prevent and overcome this problem. Bats are important arthropod predators globally and, in recent decades, an increasing number of studies have focused on the role of bats as natural enemies of agricultural pests. This review assesses the state of knowledge of the ecosystem services provided by bats as pest consumers at a global level and provides recommendations that may favour the efficiency of pest predation by bats. Through a systematic review, we assess evidence for predation, the top-down effect of bats on crops and the economic value of ecosystem services these mammals provide, describing the different methodological approaches used in a total of 66 reviewed articles and 18 agroecosystem types. We also provide a list of detailed conservation measures and management recommendations found in the scientific literature that may favour the delivery of this important ecosystem service, including actions aimed at restoring bat populations in agroecosystems. The most frequent recommendations include increasing habitat heterogeneity, providing additional roosts, and implementing laws to protect bats and reduce agrochemical use. However, very little evidence is available on the direct consequences of these practices on bat insectivory in farmland. Additionally, through a second in-depth systematic review of scientific articles focused on bat diet and, as part of the ongoing European Cost Action project CA18107, we provide a complete list of 2308 documented interactions between bat species and their respective insect pest prey. These pertain to 81 bat species belonging to 36 different genera preying upon 760 insect pests from 14 orders in agroecosystems and other habitats such as forest or urban areas. The data set is publicly available and updatable.


Asunto(s)
Artrópodos , Quirópteros , Animales , Ecosistema , Bosques , Insectos
2.
Sci Total Environ ; 863: 160875, 2023 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-36528104

RESUMEN

Climate and land use change are key global change drivers shaping future species' distributions and abundances. Negative interactions among effects of drivers can reduce the accuracy of models aimed at predicting such distributions. Here we analyse how climate and land use affected population dynamics and demography of the Algerian mouse (Mus spretus), an open-land thermophilic Mediterranean small mammal. Change to a warmer and drier climate would facilitate the expansion of the species, whereas landscape change (forest encroachment following extensive land abandonment) would produce its retreat. We correlated abundance and demography parameters computed from captures obtained in 16 plots during a 10-years period (2008-2017; SEMICE small mammal monitoring) with climate, vegetation and land use change. Climate became warmer and dryer, and afforestation due to encroachment occurred in 81 % of plots. Expected positive effects of climate warming, derived from bioclimatic niche models, were counterbalanced by negative effects of both increasing hydric deficit and changes in vegetation and landscape structure. Abundance showed a slight but significant decline (-5 %). The species' range was more resilient to change, as shown by occupancy analyses, apparently due to strong local effects of vegetation structure on occupancy. This result highlighted that negative population trends would not necessarily produce range retractions. Simultaneously analysing both abundance trends and occupancy patterns may thus allow for deeper understanding and more accurate predictions of expected population trends in response to interacting global change drivers.


Asunto(s)
Cambio Climático , Bosques , Animales , Ratones , Dinámica Poblacional , Clima , Mamíferos , Ecosistema
3.
Sci Total Environ ; 828: 154403, 2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35276147

RESUMEN

Bat arousals during hibernation are related to rises in environmental temperature, body water loss and increasing body heat. Therefore, bats either hibernate in cold places or migrate to areas with mild winters to find water and insects to intake. During winter, insects are relatively abundant in wetlands with mild climates when low temperatures hamper insect activity in other places. However, the role of wetlands to sustain winter bat activity has never been fully assessed. To further understand bat behaviour during hibernation, we evaluated how the weather influenced hibernating bats, assessed the temperature threshold that increased bat arousals, and discussed how winter temperatures could affect bat activity under future climate change scenarios. The effects of weather and landscape composition on winter bat activity were assessed by acoustically sampling four different habitats (wetlands, rice paddies, urban areas and salt marshes) in the Ebro Delta (Spain). Our results show one of the highest winter bat foraging activities ever reported, with significantly higher activity in wetlands and urban areas. Most importantly, we found a substantial increase in bat activity triggered when nocturnal temperatures reached ca. 11 °C. By contrasting historical weather datasets, we show that, since the 1940s, there has been an increase by ca. 1.5 °C in winter maximum temperatures and a 180% increase in the number of nights with mean temperatures above 11 °C in the Ebro Delta. Temperature trends suggest that in 60-80 years, winter months will reach average temperatures of 11 °C (except maybe in January), which suggest a potential coming interruption or disappearance of bat hibernation in coastal Mediterranean habitats. This study highlights the significant role of wetlands in bat conservation under a climate change scenario as these humid areas represent one of the few remaining winter foraging habitats.


Asunto(s)
Quirópteros , Hibernación , Animales , Cambio Climático , Estaciones del Año , Agua , Humedales
4.
Pest Manag Sci ; 76(11): 3759-3769, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32431084

RESUMEN

BACKGROUND: The fact that bats suppress agricultural pests has been measured for some particular dyads of predator and prey species in both economic and food security terms. The recent emergence of new molecular techniques allows for more precise screenings of bat's diet than the traditional visual identification systems and provides further evidence that bats consume an ample array of agricultural pest species. The main focus of the regulatory services that bats provide in agroecosystems has been on crop pests that cause yield losses. Rice paddies constitute a particular agronomic system with specific challenges, not only related to crop productivity but also to human health. Dipteran density in such ecosystems poses a serious threat to human wellbeing and hinders crop production. Mosquitoes cause direct harm to human populations, transmitting a number of infectious diseases. Non-biting midges (Chironomidae) can consume and weaken rice seedlings and can cause major yield losses. RESULTS: Mosquito populations and bat activity were assessed in rice paddies of Montgrí, Medes i Baix Ter Natural Park (NE Iberian Peninsula). Molecular analyses of bats faeces (6-weekly samples of 15 faeces each between mid-August and September) proved the presence of both mosquitoes and nonbiting midges in all diet samples. Furthermore, bat activity at the sampling locations was related to adult mosquito density. CONCLUSION: Our results suggest that bats actively exploit the emergence of adult mosquitoes and further prove that they prey on mosquitoes, nonbiting midges and other deleterious insects. Promoting the presence of bats next to human settlements in such agroecosystems may constitute a biological control system with direct impact on both human health and crop yield. © 2020 Society of Chemical Industry.


Asunto(s)
Quirópteros , Culicidae , Oryza , Agricultura , Animales , Ecosistema , Europa (Continente) , Humanos , Conducta Predatoria
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...