Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cancer Immunol Immunother ; 73(9): 178, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38954031

RESUMEN

Intracranial tumors present a significant therapeutic challenge due to their physiological location. Immunotherapy presents an attractive method for targeting these intracranial tumors due to relatively low toxicity and tumor specificity. Here we show that SCIB1, a TRP-2 and gp100 directed ImmunoBody® DNA vaccine, generates a strong TRP-2 specific immune response, as demonstrated by the high number of TRP2-specific IFNγ spots produced and the detection of a significant number of pentamer positive T cells in the spleen of vaccinated mice. Furthermore, vaccine-induced T cells were able to recognize and kill B16HHDII/DR1 cells after a short in vitro culture. Having found that glioblastoma multiforme (GBM) expresses significant levels of PD-L1 and IDO1, with PD-L1 correlating with poorer survival in patients with the mesenchymal subtype of GBM, we decided to combine SCIB1 ImmunoBody® with PD-1 immune checkpoint blockade to treat mice harboring intracranial tumors expressing TRP-2 and gp100. Time-to-death was significantly prolonged, and this correlated with increased CD4+ and CD8+ T cell infiltration in the tissue microenvironment (TME). However, in addition to PD-L1 and IDO, the GBM TME was found to contain a significant number of immunoregulatory T (Treg) cell-associated transcripts, and the presence of such cells is likely to significantly affect clinical outcome unless also tackled.


Asunto(s)
Neoplasias Encefálicas , Vacunas contra el Cáncer , Inhibidores de Puntos de Control Inmunológico , Receptor de Muerte Celular Programada 1 , Vacunas de ADN , Animales , Femenino , Humanos , Ratones , Antígeno B7-H1/antagonistas & inhibidores , Antígeno B7-H1/inmunología , Neoplasias Encefálicas/inmunología , Neoplasias Encefálicas/terapia , Vacunas contra el Cáncer/inmunología , Vacunas contra el Cáncer/uso terapéutico , Línea Celular Tumoral , Glioblastoma/inmunología , Glioblastoma/terapia , Glioblastoma/tratamiento farmacológico , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Inmunoterapia/métodos , Oxidorreductasas Intramoleculares , Ratones Endogámicos C57BL , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Receptor de Muerte Celular Programada 1/inmunología , Vacunas de ADN/inmunología , Vacunas de ADN/uso terapéutico , Masculino , Niño , Persona de Mediana Edad
2.
Biomedicines ; 11(8)2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37626597

RESUMEN

Immunotherapy represents an attractive avenue for cancer therapy due to its tumour specificity and relatively low frequency of adverse effects compared to other treatment modalities. Despite many advances being made in the field of cancer immunotherapy, very few immunotherapeutic treatments have been approved for difficult-to-treat solid tumours such as triple negative breast cancer (TNBC), glioblastoma multiforme (GBM), and advanced prostate cancer (PCa). The anatomical location of some of these cancers may also make them more difficult to treat. Many trials focus solely on immunotherapy and have failed to consider or manipulate, prior to the immunotherapeutic intervention, important factors such as the microbiota, which itself is directly linked to lifestyle factors, diet, stress, social support, exercise, sleep, and oral hygiene. This review summarises the most recent treatments for hard-to-treat cancers whilst factoring in the less conventional interventions which could tilt the balance of treatment in favour of success for these malignancies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA