Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Cancer Ther ; 21(3): 471-480, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-34965961

RESUMEN

Osteosarcoma is an aggressive bone tumor occurring primarily in pediatric patients. Despite years of intensive research, the outcomes of patients with metastatic disease or those who do not respond to therapy have remained poor and have not changed in the last 30 years. Oncolytic virotherapy is becoming a reality to treat local and metastatic tumors while maintaining a favorable safety profile. Delta-24-ACT is a replicative oncolytic adenovirus engineered to selectively target cancer cells and to potentiate immune responses through expression of the immune costimulatory ligand 4-1BB. This work aimed to assess the antisarcoma effect of Delta-24-ACT. MTS and replication assays were used to quantify the antitumor effects of Delta-24-ACT in vitro in osteosarcoma human and murine cell lines. Evaluation of the in vivo antitumor effect and immune response to Delta-24-ACT was performed in immunocompetent mice bearing the orthotopic K7M2 cell line. Immunophenotyping of the tumor microenvironment was characterized by immunohistochemistry and flow cytometry. In vitro, Delta-24-ACT killed osteosarcoma cells and triggered the production of danger signals. In vivo, local treatment with Delta-24-ACT led to antitumor effects against both the primary tumor and spontaneous metastases in a murine osteosarcoma model. Viral treatment was safe, with no noted toxicity. Delta-24-ACT significantly increased the median survival time of treated mice. Collectively, our data identify Delta-24-ACT administration as an effective and safe therapeutic strategy for patients with local and metastatic osteosarcoma. These results support clinical translation of this viral immunotherapy approach.


Asunto(s)
Neoplasias Óseas , Viroterapia Oncolítica , Virus Oncolíticos , Osteosarcoma , Adenoviridae/genética , Animales , Neoplasias Óseas/patología , Neoplasias Óseas/terapia , Línea Celular Tumoral , Niño , Humanos , Memoria Inmunológica , Ratones , Viroterapia Oncolítica/métodos , Virus Oncolíticos/genética , Osteosarcoma/genética , Osteosarcoma/patología , Osteosarcoma/terapia , Microambiente Tumoral , Ensayos Antitumor por Modelo de Xenoinjerto
2.
Mol Ther Oncolytics ; 20: 23-33, 2021 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-33575468

RESUMEN

Osteosarcoma is the most frequent and aggressive bone tumor in children and adolescents, with a long-term survival rate of 30%. Interleukin-12 (IL-12) is a potent cytokine that bridges innate and adaptive immunity, triggers antiangiogenic responses, and achieves potent antitumor effects. In this work, we evaluated the antisarcoma effect of a high-capacity adenoviral vector encoding mouse IL-12. This vector harbored a mifepristone-inducible system for controlled expression of IL-12 (High-Capacity adenoviral vector enconding the EF1α promoter [HCA-EFZP]-IL-12). We found that local administration of the vector resulted in a reduction in the tumor burden, extended overall survival, and tumor eradication. Moreover, long-term survivors exhibited immunological memory when rechallenged with the same tumor cells. Treatment with HCA-EFZP-IL-12 also resulted in a significant decrease in lung metastasis. Immunohistochemical analyses showed profound remodeling of the osteosarcoma microenvironment with decreases in angiogenesis and macrophage and myeloid cell numbers. In summary, our data underscore the potential therapeutic value of IL-12 in the context of a drug-inducible system that allows controlled expression of this cytokine, which can trigger a potent antitumor immune response in primary and metastatic pediatric osteosarcoma.

3.
Clin Cancer Res ; 27(6): 1807-1820, 2021 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-33376098

RESUMEN

PURPOSE: Atypical teratoid/rhabdoid tumors (AT/RT) and central nervous system primitive neuroectodermal tumors (CNS-PNET) are pediatric brain tumors with poor survival and life-long negative side effects. Here, the aim was to characterize the efficacy and safety of the oncolytic adenovirus, Delta-24-RGD, which selectively replicates in and kills tumor cells. EXPERIMENTAL DESIGN: Delta-24-RGD determinants for infection and replication were evaluated in patient expression datasets. Viral replication and cytotoxicity were assessed in vitro in a battery of CNS-PNET and AT/RT cell lines. In vivo, efficacy was determined in different orthotopic mouse models, including early and established tumor models, a disseminated AT/RT lesion model, and immunocompetent humanized mouse models (hCD34+-NSG-SGM3). RESULTS: Delta-24-RGD infected and replicated efficiently in all the cell lines tested. In addition, the virus induced dose-dependent cytotoxicity [IC50 value below 1 plaque-forming unit (PFU)/cell] and the release of immunogenic markers. In vivo, a single intratumoral Delta-24-RGD injection (107 or 108 PFU) significantly increased survival and led to long-term survival in AT/RT and PNET models. Delta-24-RGD hindered the dissemination of AT/RTs and increased survival, leading to 70% of long-term survivors. Of relevance, viral administration to established tumor masses (30 days after engraftment) showed therapeutic benefit. In humanized immunocompetent models, Delta-24-RGD significantly extended the survival of mice bearing AT/RTs or PNETs (ranging from 11 to 27 days) and did not display any toxicity associated with inflammation. Immunophenotyping of Delta-24-RGD-treated tumors revealed increased CD8+ T-cell infiltration. CONCLUSIONS: Delta-24-RGD is a feasible therapeutic option for AT/RTs and CNS-PNETs. This work constitutes the basis for potential translation to the clinical setting.


Asunto(s)
Neoplasias del Sistema Nervioso Central/terapia , Tumores Neuroectodérmicos Primitivos/terapia , Oligopéptidos/genética , Viroterapia Oncolítica/métodos , Virus Oncolíticos/genética , Tumor Rabdoide/terapia , Teratoma/terapia , Animales , Apoptosis , Proliferación Celular , Neoplasias del Sistema Nervioso Central/inmunología , Neoplasias del Sistema Nervioso Central/mortalidad , Neoplasias del Sistema Nervioso Central/patología , Femenino , Humanos , Inmunidad Celular , Ratones , Ratones Endogámicos C57BL , Ratones Desnudos , Tumores Neuroectodérmicos Primitivos/inmunología , Tumores Neuroectodérmicos Primitivos/mortalidad , Tumores Neuroectodérmicos Primitivos/patología , Tumor Rabdoide/inmunología , Tumor Rabdoide/mortalidad , Tumor Rabdoide/patología , Teratoma/inmunología , Teratoma/mortalidad , Teratoma/patología , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
4.
Nat Commun ; 10(1): 2235, 2019 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-31138805

RESUMEN

Pediatric high-grade glioma (pHGG) and diffuse intrinsic pontine gliomas (DIPGs) are aggressive pediatric brain tumors in desperate need of a curative treatment. Oncolytic virotherapy is emerging as a solid therapeutic approach. Delta-24-RGD is a replication competent adenovirus engineered to replicate in tumor cells with an aberrant RB pathway. This virus has proven to be safe and effective in adult gliomas. Here we report that the administration of Delta-24-RGD is safe in mice and results in a significant increase in survival in immunodeficient and immunocompetent models of pHGG and DIPGs. Our results show that the Delta-24-RGD antiglioma effect is mediated by the oncolytic effect and the immune response elicited against the tumor. Altogether, our data highlight the potential of this virus as treatment for patients with these tumors. Of clinical significance, these data have led to the start of a phase I/II clinical trial at our institution for newly diagnosed DIPG (NCT03178032).


Asunto(s)
Adenoviridae , Neoplasias del Tronco Encefálico/terapia , Glioma/terapia , Viroterapia Oncolítica/métodos , Virus Oncolíticos , Animales , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/terapia , Neoplasias del Tronco Encefálico/patología , Línea Celular Tumoral , Supervivencia Celular , Simulación por Computador , Modelos Animales de Enfermedad , Glioma/patología , Humanos , Técnicas In Vitro , Ratones , Clasificación del Tumor , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...