Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Microb Cell Fact ; 23(1): 207, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39044227

RESUMEN

The engineering of non ribosomal peptide synthetases (NRPS) for new substrate specificity is a potent strategy to incorporate non-canonical amino acids into peptide sequences, thereby creating peptide diversity and broadening applications. The non-ribosomal peptide pyoverdine is the primary siderophore produced by Pseudomonas aeruginosa and holds biomedical promise in diagnosis, bio-imaging and antibiotic vectorization. We engineered the adenylation domain of PvdD, the terminal NRPS in pyoverdine biosynthesis, to accept a functionalized amino acid. Guided by molecular modeling, we rationally designed mutants of P. aeruginosa with mutations at two positions in the active site. A single amino acid change results in the successful incorporation of an azido-L-homoalanine leading to the synthesis of a new pyoverdine analog, functionalized with an azide function. We further demonstrated that copper free click chemistry is efficient on the functionalized pyoverdine and that the conjugated siderophore retains the iron chelation properties and its capacity to be recognized and transported by P. aeruginosa. The production of clickable pyoverdine holds substantial biotechnological significance, paving the way for numerous downstream applications.


Asunto(s)
Química Clic , Oligopéptidos , Péptido Sintasas , Ingeniería de Proteínas , Pseudomonas aeruginosa , Oligopéptidos/biosíntesis , Oligopéptidos/metabolismo , Pseudomonas aeruginosa/enzimología , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Péptido Sintasas/metabolismo , Péptido Sintasas/genética , Ingeniería de Proteínas/métodos , Sideróforos/biosíntesis , Sideróforos/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/química , Dominio Catalítico , Especificidad por Sustrato
2.
Biomolecules ; 13(6)2023 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-37371539

RESUMEN

Siderophores are small metal chelators synthesized by numerous organisms to access iron. These secondary metabolites are ubiquitously present on Earth, and because their production represents the main strategy to assimilate iron, they play an important role in both positive and negative interactions between organisms. In addition, siderophores are used in biotechnology for diverse applications in medicine, agriculture and the environment. The generation of non-natural siderophore analogs provides a new opportunity to create new-to-nature chelating biomolecules that can offer new properties to expand applications. This review summarizes the main strategies of combinatorial biosynthesis that have been used to generate siderophore analogs. We first provide a brief overview of siderophore biosynthesis, followed by a description of the strategies, namely, precursor-directed biosynthesis, the design of synthetic or heterologous pathways and enzyme engineering, used in siderophore biosynthetic pathways to create diversity. In addition, this review highlights the engineering strategies that have been used to improve the production of siderophores by cells to facilitate their downstream utilization.


Asunto(s)
Hierro , Sideróforos , Sideróforos/metabolismo , Hierro/metabolismo , Quelantes , Metabolismo Secundario
3.
Microb Biotechnol ; 15(9): 2351-2363, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35748120

RESUMEN

Iron plays a key role in microbial metabolism and bacteria have developed multiple siderophore-driven mechanisms due to its poor bioavailability for organisms in the environment. Iron-bearing minerals generally serve as a nutrient source to sustain bacterial growth after bioweathering. Siderophores are high-affinity ferric iron chelators, of which the biosynthesis is tightly regulated by the presence of iron. Pyoverdine-producing Pseudomonas have shown their ability to extract iron and magnesium from asbestos waste as nutrients. However, such bioweathering is rapidly limited due to repression of the pyoverdine pathway and the low bacterial requirement for iron. We developed a metabolically engineered strain of Pseudomonas aeruginosa for which pyoverdine production was no longer repressed by iron as a proof of concept. We compared siderophore-promoted dissolution of flocking asbestos waste by this optimized strain to that by the wild-type strain. Interestingly, pyoverdine production by the optimized strain was seven times higher in the presence of asbestos waste and the dissolution of magnesium and iron from the chrysotile fibres contained in flocking asbestos waste was significantly enhanced. This innovative mineral weathering process contributes to remove toxic iron from the asbestos fibres and may contribute to the development of an eco-friendly method to manage asbestos waste.


Asunto(s)
Amianto , Sideróforos , Amianto/metabolismo , Bacterias/metabolismo , Hierro/metabolismo , Magnesio/metabolismo , Pseudomonas/metabolismo , Pseudomonas aeruginosa/metabolismo , Sideróforos/metabolismo
4.
Microb Genom ; 7(9)2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34473016

RESUMEN

The biological features that allow a pathogen to survive in the hospital environment are mostly unknown. The extinction of bacterial epidemics in hospitals is mostly attributed to changes in medical practice, including infection control, but the role of bacterial adaptation has never been documented. We analysed a collection of Pseudomonas aeruginosa isolates belonging to the Besançon Epidemic Strain (BES), responsible for a 12year nosocomial outbreak, using a genotype-to-phenotype approach. Bayesian analysis estimated the emergence of the clone in the hospital 5 years before its opening, during the creation of its water distribution network made of copper. BES survived better than the reference strains PAO1 and PA14 in a copper solution due to a genomic island containing 13 metal-resistance genes and was specifically able to proliferate in the ubiquitous amoeba Vermamoeba vermiformis. Mutations affecting amino-acid metabolism, antibiotic resistance, lipopolysaccharide biosynthesis, and regulation were enriched during the spread of BES. Seven distinct regulatory mutations attenuated the overexpression of the genes encoding the efflux pump MexAB-OprM over time. The fitness of BES decreased over time in correlation with its genome size. Overall, the resistance to inhibitors and predators presumably aided the proliferation and propagation of BES in the plumbing system of the hospital. The pathogen further spread among patients via multiple routes of contamination. The decreased prevalence of patients infected by BES mirrored the parallel and convergent genomic evolution and reduction that affected bacterial fitness. Along with infection control measures, this may have participated in the extinction of BES in the hospital setting.


Asunto(s)
Hospitales , Infecciones por Pseudomonas/epidemiología , Infecciones por Pseudomonas/microbiología , Pseudomonas aeruginosa/genética , Teorema de Bayes , ADN Bacteriano , Brotes de Enfermedades , Farmacorresistencia Bacteriana Múltiple/genética , Islas Genómicas , Humanos , Fenotipo , Pseudomonas aeruginosa/clasificación , Análisis de Secuencia de ADN
5.
Environ Microbiol ; 22(12): 5222-5231, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32840000

RESUMEN

Resistance Nodulation cell Division (RND) efflux pumps are known to contribute to the tolerance of Pseudomonas putida to aromatic hydrocarbons, but their role in antibiotic resistance has not been fully elucidated. In this study, two types of single-step multidrug-resistant (MDR) mutants were selected in vitro from reference strain KT2440. Mutants of the first type were more resistant to fluoroquinolones and ß-lactams except imipenem, and overproduced the efflux system TtgABC as a result of mutations occurring in regulator TtgR. In addition to TtgABC, mutants of the second type such as HPG-5 were found to upregulate a novel RND pump, dubbed ParXY/TtgC, which accommodates cefepim, fluoroquinolones and aminoglycosides. As demonstrated by gene deletion experiments, TtgABC and ParXY/TtgC are both under the positive control of a two-component system, PpeRS. Whole-genome sequence analyses revealed that mutant HPG-5 harbours a mutation inactivating the gene (sucD) of succinyl-CoA synthetase, an enzyme of the tricarboxylic cycle. Disruption of sucD in strain KT2440 reproduced the resistance phenotype of HPG-5, and activated the glyoxylate shunt. Finally, identification of two MDR clinical strains of P. putida that jointly overexpress TtgABC and ParXY/TtgC, of which one is a sucD mutant, highlights the role of these efflux systems as determinants of antibiotic resistance.


Asunto(s)
Antibacterianos/farmacología , Farmacorresistencia Bacteriana Múltiple , Regulación Bacteriana de la Expresión Génica , Proteínas de Transporte de Membrana/genética , Pseudomonas putida/efectos de los fármacos , Antibacterianos/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Transporte Biológico , División Celular , Proteínas de Transporte de Membrana/metabolismo , Pruebas de Sensibilidad Microbiana , Mutación , Pseudomonas putida/genética , Pseudomonas putida/metabolismo
6.
Artículo en Inglés | MEDLINE | ID: mdl-31964794

RESUMEN

The intrinsic resistance of Pseudomonas aeruginosa to polymyxins in part relies on the addition of 4-amino-4-deoxy-l-arabinose (Ara4N) molecules to the lipid A of lipopolysaccharide (LPS), through induction of operon arnBCADTEF-ugd (arn) expression. As demonstrated previously, at least three two-component regulatory systems (PmrAB, ParRS, and CprRS) are able to upregulate this operon when bacteria are exposed to colistin. In the present study, gene deletion experiments with the bioluminescent strain PAO1::lux showed that ParRS is a key element in the tolerance of P. aeruginosa to this last-resort antibiotic (i.e., resistance to early drug killing). Other loci of the ParR regulon, such as those encoding the efflux proteins MexXY (mexXY), the polyamine biosynthetic pathway PA4773-PA4774-PA4775, and Ara4N LPS modification process (arnBCADTEF-ugd), also contribute to the bacterial tolerance in an intricate way with ParRS. Furthermore, we found that both stable upregulation of the arn operon and drug-induced ParRS-dependent overexpression of the mexXY genes accounted for the elevated resistance of pmrB mutants to colistin. Deletion of the mexXY genes in a constitutively activated ParR mutant of PAO1 was associated with significantly increased expression of the genes arnA, PA4773, and pmrA in the absence of colistin exposure, thereby highlighting a functional link between the MexXY/OprM pump, the PA4773-PA4774-PA4775 pathway, and Ara4N-based modification of LPS. The role played by MexXY/OprM in the adaptation of P. aeruginosa to polymyxins opens new perspectives for restoring the susceptibility of resistant mutants through the use of efflux inhibitors.


Asunto(s)
Antibacterianos/farmacología , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas Bacterianas/genética , Colistina/farmacología , Farmacorresistencia Bacteriana/genética , Proteínas de Transporte de Membrana/genética , Pseudomonas aeruginosa/genética , Eliminación de Gen , Regulación Bacteriana de la Expresión Génica/genética , Pruebas de Sensibilidad Microbiana , Pseudomonas aeruginosa/metabolismo
7.
J Antimicrob Chemother ; 74(9): 2544-2550, 2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-31199431

RESUMEN

BACKGROUND: Colistin resistance in Acinetobacter baumannii often results from mutational activation of the two-component system PmrAB and subsequent addition of phospho-ethanolamine (pEtN) to lipooligosaccharide by up-regulated pEtN transferase PmrC. OBJECTIVES: To characterize mechanisms of colistin resistance independent of PmrCAB in A. baumannii. METHODS: Twenty-seven colistin-resistant A. baumannii were collected from 2012 to 2018. Analysis of operon pmrCAB was performed by PCR and sequencing. Seven strains were investigated further by WGS and whole-genome MLST (wgMLST). RESULTS: Seven out of the 27 selected isolates were found to overexpress eptA, a gene homologous to pmrC, likely as a consequence of upstream insertion of an ISAba1 element. Insertion sites of ISAba1 were mapped 13, 18 and 156 bp ahead of the start codon of eptA in five strains, one strain and one strain, respectively. The finding that the isolates did not cluster together when compared by wgMLST analysis supports the notion that distinct insertion events occurred in close, but different, genetic backgrounds. CONCLUSIONS: Activation of eptA and subsequent addition of pEtN to the cell surface represents a novel mechanism of resistance to colistin in A. baumannii.


Asunto(s)
Infecciones por Acinetobacter/microbiología , Acinetobacter baumannii/genética , Antibacterianos/farmacología , Proteínas Bacterianas/genética , Colistina/farmacología , Farmacorresistencia Bacteriana/genética , Infecciones por Acinetobacter/tratamiento farmacológico , Acinetobacter baumannii/efectos de los fármacos , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Persona de Mediana Edad , Operón/genética , Factores de Transcripción/genética , Secuenciación Completa del Genoma
8.
Water Res ; 157: 579-586, 2019 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-30999256

RESUMEN

BACKGROUND: Pseudomonas aeruginosa (PA) is an important opportunistic pathogen that thrives best in the distal elements of plumbing and waste-water systems. Although nosocomial outbreaks of PA have been associated with water sources, the role of the plumbing system of healthcare premises as a reservoir for this pathogen is still unclear. MATERIALS AND METHODS: We collected water samples from 12 technical areas, distant from any medical activity, in a teaching hospital in France once a week for 11 weeks. We used a method that resuscitates persister cells because of the nutrient-poor conditions and the presence of inhibitors (e.g. chlorine and copper ions). Briefly, water was sampled in sterile bottles containing 100 µM of the copper-ion chelating agent diethyldithiocarbamate (DDTC). A portion of the samples was immediately filtered through 0.45-µm membranes, deposited on R2A agar plates, and incubated seven days at 22 °C (following European recommendations). The remaining water was incubated 14 days at 22 °C and then filtered and cultured on R2A, blood-, or cetrimide-containing agar plates. PA isolates were identified by MS MALDI-TOF, genotyped by PFGE and WGS, and tested for survival in a 150 µg/L copper (II) sulphate solution. RESULTS: Although the 12 water sampling points always tested negative with the recommended method, 67% were positive at least once for PA with the adapted method (i.e. with DDTC). The 14 PA persister isolates found throughout the plumbing system were clonal and belong to the high-risk clone ST308. Their genome harbours a 37-kb genomic island (GI-7) containing 13 genes linked to copper resistance. ST308 survived better in the copper solution than comparators that did not harbour GI-7 (P. aeruginosa strains PAO1, PA14, and ST235). The deletion of GI-7 in ST308 abrogated its tolerance to copper. The GI-7 nucleotide sequence shares 98% and 72% identity with sequences from the environmental species Pseudomonas putida and the phytopathogenic species Pseudomonas syringae, respectively. CONCLUSION: We report the contamination of the plumbing system of a healthcare premises by persister cells of the high-risk clone P. aeruginosa ST308. New recommendations for the monitoring of water contamination should consider persister cells. The genomic island GI-7, which confers tolerance to copper, probably originates from Pseudomonas species found in copper-contaminated soils and plants. Agricultural practices may have an unexpected consequence, allowing copper-tolerant pathogens to survive in the hospital environment and contaminate fragile patients.


Asunto(s)
Pseudomonas aeruginosa , Ingeniería Sanitaria , Cobre , Francia , Hospitales , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA