Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Transl Med ; 14(635): eabb7695, 2022 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-35263148

RESUMEN

Dysregulation of innate immune signaling pathways is implicated in various hematologic malignancies. However, these pathways have not been systematically examined in acute myeloid leukemia (AML). We report that AML hematopoietic stem and progenitor cells (HSPCs) exhibit a high frequency of dysregulated innate immune-related and inflammatory pathways, referred to as oncogenic immune signaling states. Through gene expression analyses and functional studies in human AML cell lines and patient-derived samples, we found that the ubiquitin-conjugating enzyme UBE2N is required for leukemic cell function in vitro and in vivo by maintaining oncogenic immune signaling states. It is known that the enzyme function of UBE2N can be inhibited by interfering with thioester formation between ubiquitin and the active site. We performed in silico structure-based and cellular-based screens and identified two related small-molecule inhibitors UC-764864/65 that targeted UBE2N at its active site. Using these small-molecule inhibitors as chemical probes, we further revealed the therapeutic efficacy of interfering with UBE2N function. This resulted in the blocking of ubiquitination of innate immune- and inflammatory-related substrates in human AML cell lines. Inhibition of UBE2N function disrupted oncogenic immune signaling by promoting cell death of leukemic HSPCs while sparing normal HSPCs in vitro. Moreover, baseline oncogenic immune signaling states in leukemic cells derived from discrete subsets of patients with AML exhibited a selective dependency on UBE2N function in vitro and in vivo. Our study reveals that interfering with UBE2N abrogates leukemic HSPC function and underscores the dependency of AML cells on UBE2N-dependent oncogenic immune signaling states.


Asunto(s)
Leucemia Mieloide Aguda , Enzimas Ubiquitina-Conjugadoras , Proliferación Celular/genética , Humanos , Leucemia Mieloide Aguda/metabolismo , Oncogenes , Transducción de Señal/genética , Enzimas Ubiquitina-Conjugadoras/antagonistas & inhibidores , Enzimas Ubiquitina-Conjugadoras/genética , Enzimas Ubiquitina-Conjugadoras/metabolismo
2.
Cell Rep ; 30(8): 2776-2790.e6, 2020 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-32101751

RESUMEN

TRAF-interacting protein with a forkhead-associated domain B (TIFAB) is implicated in myeloid malignancies with deletion of chromosome 5q. Employing a combination of proteomic and genetic approaches, we find that TIFAB regulates ubiquitin-specific peptidase 15 (USP15) ubiquitin hydrolase activity. Expression of TIFAB in hematopoietic stem/progenitor cells (HSPCs) permits USP15 signaling to substrates, including MDM2 and KEAP1, and mitigates p53 expression. Consequently, TIFAB-deficient HSPCs exhibit compromised USP15 signaling and are sensitized to hematopoietic stress by derepression of p53. In MLL-AF9 leukemia, deletion of TIFAB increases p53 signaling and correspondingly decreases leukemic cell function and development of leukemia. Restoring USP15 expression partially rescues the function of TIFAB-deficient MLL-AF9 cells. Conversely, elevated TIFAB represses p53, increases leukemic progenitor function, and correlates with MLL gene expression programs in leukemia patients. Our studies uncover a function of TIFAB as an effector of USP15 activity and rheostat of p53 signaling in stressed and malignant HSPCs.


Asunto(s)
Hematopoyesis , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Transducción de Señal , Proteína p53 Supresora de Tumor/metabolismo , Proteasas Ubiquitina-Específicas/metabolismo , Animales , Dominio Catalítico , Línea Celular Tumoral , Modelos Animales de Enfermedad , Células HEK293 , Células Madre Hematopoyéticas/metabolismo , Humanos , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patología , Ratones , Proteína de la Leucemia Mieloide-Linfoide/metabolismo , Unión Proteica , Estrés Fisiológico , Ubiquitina/metabolismo , Proteasas Ubiquitina-Específicas/química , Ubiquitinación
3.
Nature ; 539(7630): 575-578, 2016 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-27828948

RESUMEN

Mitochondrial products such as ATP, reactive oxygen species, and aspartate are key regulators of cellular metabolism and growth. Abnormal mitochondrial function compromises integrated growth-related processes such as development and tissue repair, as well as homeostatic mechanisms that counteract ageing and neurodegeneration, cardiovascular disease, and cancer. Physiologic mechanisms that control mitochondrial activity in such settings remain incompletely understood. Here we show that the atypical Fat1 cadherin acts as a molecular 'brake' on mitochondrial respiration that regulates vascular smooth muscle cell (SMC) proliferation after arterial injury. Fragments of Fat1 accumulate in SMC mitochondria, and the Fat1 intracellular domain interacts with multiple mitochondrial proteins, including critical factors associated with the inner mitochondrial membrane. SMCs lacking Fat1 (Fat1KO) grow faster, consume more oxygen for ATP production, and contain more aspartate. Notably, expression in Fat1KO cells of a modified Fat1 intracellular domain that localizes exclusively to mitochondria largely normalizes oxygen consumption, and the growth advantage of these cells can be suppressed by inhibition of mitochondrial respiration, which suggest that a Fat1-mediated growth control mechanism is intrinsic to mitochondria. Consistent with this idea, Fat1 species associate with multiple respiratory complexes, and Fat1 deletion both increases the activity of complexes I and II and promotes the formation of complex-I-containing supercomplexes. In vivo, Fat1 is expressed in injured human and mouse arteries, and inactivation of SMC Fat1 in mice potentiates the response to vascular damage, with markedly increased medial hyperplasia and neointimal growth, and evidence of higher SMC mitochondrial respiration. These studies suggest that Fat1 controls mitochondrial activity to restrain cell growth during the reparative, proliferative state induced by vascular injury. Given recent reports linking Fat1 to cancer, abnormal kidney and muscle development, and neuropsychiatric disease, this Fat1 function may have importance in other settings of altered cell growth and metabolism.


Asunto(s)
Arterias/citología , Arterias/metabolismo , Cadherinas/metabolismo , Respiración de la Célula , Mitocondrias/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Aorta/citología , Aorta/lesiones , Aorta/metabolismo , Arterias/lesiones , Ácido Aspártico/metabolismo , Cadherinas/química , Cadherinas/deficiencia , Proliferación Celular , Técnicas de Inactivación de Genes , Humanos , Masculino , Ratones , Mitocondrias/química , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/metabolismo , Músculo Liso Vascular/citología , Músculo Liso Vascular/lesiones , Músculo Liso Vascular/metabolismo , Neointima/metabolismo , Oxígeno/metabolismo , Consumo de Oxígeno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...