Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cells ; 12(6)2023 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-36980283

RESUMEN

The plasma membrane (PM) is subjected to multiple mechanical forces, and it must adapt and respond to them. PM invaginations named caveolae, with a specific protein and lipid composition, play a crucial role in this mechanosensing and mechanotransduction process. They respond to PM tension changes by flattening, contributing to the buffering of high-range increases in mechanical tension, while novel structures termed dolines, sharing Caveolin1 as the main component, gradually respond to low and medium forces. Caveolae are associated with different types of cytoskeletal filaments, which regulate membrane tension and also initiate multiple mechanotransduction pathways. Caveolar components sense the mechanical properties of the substrate and orchestrate responses that modify the extracellular matrix (ECM) according to these stimuli. They perform this function through both physical remodeling of ECM, where the actin cytoskeleton is a central player, and via the chemical alteration of the ECM composition by exosome deposition. Here, we review mechanotransduction regulation mediated by caveolae and caveolar components, focusing on how mechanical cues are transmitted through the cellular cytoskeleton and how caveolae respond and remodel the ECM.


Asunto(s)
Caveolas , Mecanotransducción Celular , Caveolas/metabolismo , Mecanotransducción Celular/fisiología , Membrana Celular , Matriz Extracelular/metabolismo , Citoesqueleto/metabolismo
2.
Nat Commun ; 14(1): 1122, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36854674

RESUMEN

The mechanisms triggering metastasis in pheochromocytoma/paraganglioma are unknown, hindering therapeutic options for patients with metastatic tumors (mPPGL). Herein we show by genomic profiling of a large cohort of mPPGLs that high mutational load, microsatellite instability and somatic copy-number alteration burden are associated with ATRX/TERT alterations and are suitable prognostic markers. Transcriptomic analysis defines the signaling networks involved in the acquisition of metastatic competence and establishes a gene signature related to mPPGLs, highlighting CDK1 as an additional mPPGL marker. Immunogenomics accompanied by immunohistochemistry identifies a heterogeneous ecosystem at the tumor microenvironment level, linked to the genomic subtype and tumor behavior. Specifically, we define a general immunosuppressive microenvironment in mPPGLs, the exception being PD-L1 expressing MAML3-related tumors. Our study reveals canonical markers for risk of metastasis, and suggests the usefulness of including immune parameters in clinical management for PPGL prognostication and identification of patients who might benefit from immunotherapy.


Asunto(s)
Neoplasias de las Glándulas Suprarrenales , Neoplasias Primarias Secundarias , Paraganglioma , Feocromocitoma , Humanos , Neoplasias de las Glándulas Suprarrenales/genética , Genómica , Paraganglioma/genética , Paraganglioma/inmunología , Feocromocitoma/genética , Feocromocitoma/inmunología , Microambiente Tumoral/genética
3.
Cancers (Basel) ; 13(19)2021 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-34638246

RESUMEN

One of the main problems we face with PPGL is the lack of molecular markers capable of predicting the development of metastases in patients. Telomere-related genes, such as TERT and ATRX, have been recently described in PPGL, supporting the association between the activation of immortalization mechanisms and disease progression. However, the contribution of other genes involving telomere preservation machinery has not been previously investigated. In this work, we aimed to analyze the prognostic value of a comprehensive set of genes involved in telomere maintenance. For this study, we collected 165 PPGL samples (97 non-metastatic/63 metastatic), genetically characterized, in which the expression of 29 genes of interest was studied by NGS. Three of the 29 genes studied, TERT, ATRX and NOP10, showed differential expression between metastatic and non-metastatic cases, and alterations in these genes were associated with a shorter time to progression, independent of SDHB-status. We studied telomere length by Q-FISH in patient samples and in an in vitro model. NOP10 overexpressing tumors displayed an intermediate-length telomere phenotype without ALT, and in vitro results suggest that NOP10 has a role in telomerase-dependent telomere maintenance. We also propose the implementation of NOP10 IHC to better stratify PPGL patients.

4.
Toxins (Basel) ; 13(8)2021 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-34437452

RESUMEN

In the last decades, the aquaculture industry has introduced plant-based ingredients as a source of protein in aquafeeds. This has led to mycotoxin contaminations, representing an ecological, health and economic problem. The aim of this study was to determine in the RTgill-W1 fish cell line the toxicity of fifteen mycotoxins of common occurrence in aquafeeds. To identify the most sensitive endpoint of toxicity, the triple assay was used. It consisted of three assays: alamarBlue, Neutral Red Uptake and CFDA-AM, which revealed the mitochondrial activity, the lysosomal integrity and the plasma membrane integrity, respectively. Most of the assayed mycotoxins were toxic predominantly at lysosomal level (enniatins, beauvericin, zearalenone, ochratoxin A, deoxynivalenol (DON) and its acetylated metabolites 15-O-acetyl-DON and 3-acetyl-DON). Aflatoxins B1 and B2 exerted the greatest effects at mitochondrial level, while fumonisins B1 and B2 and nivalenol were not toxic up to 100 µg/mL. In general, low toxicity was observed at plasma membrane level. The vast majority of the mycotoxins assayed exerted a pronounced acute effect in the fish RTgill-W1 cell line, emphasizing the need for further studies to ascertain the impact of mycotoxin contamination of fish feeds in the aquaculture industry and to establish safe limits in aquafeeds.


Asunto(s)
Alimentación Animal/análisis , Alimentación Animal/microbiología , Acuicultura , Citotoxinas/análisis , Citotoxinas/toxicidad , Peces/crecimiento & desarrollo , Micotoxinas/análisis , Micotoxinas/toxicidad , Animales , Membrana Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas/efectos de los fármacos , Lisosomas/efectos de los fármacos , Mitocondrias/efectos de los fármacos
5.
Front Endocrinol (Lausanne) ; 11: 572089, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33424765

RESUMEN

The complex functions of adipose tissue have been a focus of research interest over the past twenty years. Adipose tissue is not only the main energy storage depot, but also one of the largest endocrine organs in the body and carries out crucial metabolic functions. Moreover, brown and beige adipose depots are major sites of energy expenditure through the activation of adaptive, non-shivering thermogenesis. In recent years, numerous signaling molecules and pathways have emerged as critical regulators of adipose tissue, in both homeostasis and obesity-related disease. Among the best characterized are members of the p38 kinase family. The activity of these kinases has emerged as a key contributor to the biology of the white and brown adipose tissues, and their modulation could provide new therapeutic approaches against obesity. Here, we give an overview of the roles of the distinct p38 family members in adipose tissue, focusing on their actions in adipogenesis, thermogenic activity, and secretory function.


Asunto(s)
Tejido Adiposo/fisiología , Proteínas Quinasas p38 Activadas por Mitógenos/fisiología , Adipogénesis , Animales , Plasticidad de la Célula , Transdiferenciación Celular , Humanos , Inflamación/etiología , Termogénesis
6.
PLoS Biol ; 16(7): e2004455, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29979672

RESUMEN

Adipose tissue has emerged as an important regulator of whole-body metabolism, and its capacity to dissipate energy in the form of heat has acquired a special relevance in recent years as potential treatment for obesity. In this context, the p38MAPK pathway has arisen as a key player in the thermogenic program because it is required for the activation of brown adipose tissue (BAT) thermogenesis and participates also in the transformation of white adipose tissue (WAT) into BAT-like depot called beige/brite tissue. Here, using mice that are deficient in p38α specifically in adipose tissue (p38αFab-KO), we unexpectedly found that lack of p38α protected against high-fat diet (HFD)-induced obesity. We also showed that p38αFab-KO mice presented higher energy expenditure due to increased BAT thermogenesis. Mechanistically, we found that lack of p38α resulted in the activation of the related protein kinase family member p38δ. Our results showed that p38δ is activated in BAT by cold exposure, and lack of this kinase specifically in adipose tissue (p38δ Fab-KO) resulted in overweight together with reduced energy expenditure and lower body and skin surface temperature in the BAT region. These observations indicate that p38α probably blocks BAT thermogenesis through p38δ inhibition. Consistent with the results obtained in animals, p38α was reduced in visceral and subcutaneous adipose tissue of subjects with obesity and was inversely correlated with body mass index (BMI). Altogether, we have elucidated a mechanism implicated in physiological BAT activation that has potential clinical implications for the treatment of obesity and related diseases such as diabetes.


Asunto(s)
Tejido Adiposo Pardo/enzimología , Tejido Adiposo Pardo/fisiología , Proteína Quinasa 13 Activada por Mitógenos/antagonistas & inhibidores , Proteína Quinasa 14 Activada por Mitógenos/metabolismo , Termogénesis , Adipocitos Marrones/enzimología , Adulto , Animales , Índice de Masa Corporal , Diabetes Mellitus Experimental/enzimología , Diabetes Mellitus Experimental/prevención & control , Dieta , Metabolismo Energético , Activación Enzimática , Humanos , Sistema de Señalización de MAP Quinasas , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Proteína Quinasa 13 Activada por Mitógenos/metabolismo , Modelos Biológicos , Obesidad/enzimología , Obesidad/prevención & control , Proteína Desacopladora 1/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...