Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Tissue Res ; 396(2): 213-229, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38424269

RESUMEN

A great bulk of recent experimental evidence suggests the key role of the complex crosstalk between the extracellular matrix (ECM) and the cellular component of tissues during morphogenesis and embryogenesis. In particular, remodeling of the ECM and of its physical interactions pattern with surrounding cells represent two crucial processes that might be involved in muscle development. However, little information is available on this topic, especially on invertebrate species. To obtain new insights on how tuning the ECM microenvironment might drive cellular fate during embryonic development, we used the invertebrate medicinal leech Hirudo verbana as a valuable experimental model, due to its simple anatomy and the recapitulation of many aspects of the basic biological processes of vertebrates. Our previous studies on leech post-embryonic development have already shown the pivotal role of ECM changes during the growth of the body wall and the role of Yes-associated protein 1 (YAP1) in mechanotransduction. Here, we suggest that the interactions between stromal cell telocytes and ECM might be crucial in driving the organization of muscle layers during embryogenesis. Furthermore, we propose a possible role of the pleiotropic enzyme HvRNASET2 as a possible modulator of collagen deposition and ECM remodeling not only during regenerative processes (as previously demonstrated) but also in embryogenesis.


Asunto(s)
Animales Ponzoñosos , Matriz Extracelular , Sanguijuelas , Morfogénesis , Animales , Matriz Extracelular/metabolismo , Sanguijuelas/embriología
2.
Int J Mol Sci ; 23(24)2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36555595

RESUMEN

The invertebrate leech Hirudo verbana represents a powerful experimental animal model for improving the knowledge about the functional interaction between the extracellular matrix (ECM) and cells within the tissue microenvironment (TME), and the key role played by ECM stiffness during development and growth. Indeed, the medicinal leech is characterized by a simple anatomical organization reproducing many aspects of the basic biological processes of vertebrates and in which a rapid spatiotemporal development is well established and easily assessed. Our results show that ECM structural organization, as well as the amount of fibrillar and non-fibrillar collagen are deeply different from hatching leeches to adult ones. In addition, the changes in ECM remodelling occurring during the different leech developmental stages, leads to a gradient of stiffness regulating both the path of migratory cells and their fates. The ability of cells to perceive and respond to changes in ECM composition and mechanics strictly depend on nuclear or cytoplasmic expression of Yes-Associated Protein 1 (YAP1), a key mediator converting mechanical signals into transcriptional outputs, expression, and activation.


Asunto(s)
Hirudo medicinalis , Sanguijuelas , Animales , Sanguijuelas/química , Matriz Extracelular , Factores de Transcripción , Citoplasma
3.
Mech Ageing Dev ; 206: 111705, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35798289

RESUMEN

Amyloid fibrils and fibril-like structures are currently estimated to represent many different products of several genes in humans and play a key role in many types of proteinopathies, commonly associated with ageing process. They share the mutual feature of aggregation-prone proteins and the building up of molecular-supramolecular structure, such as inter-neuronal plaques in the brain of Alzheimer's Disease (AD) patients, characterized by an extraordinary strength. Noteworthy, this type of structure has been reported in different organisms, in particular in invertebrates. The aim of the current review is to focus on alpha and beta amyloids i.e., SAAs, SAP and APP, elucidating the structure and function of amyloid proteins in invertebrates (such as nematods, annelids, molluscs, insects, ascidians) and highlighting their striking pattern of functional conservation when compared to human amyloid-like fibrils, thus focusing on possible new studies and applications for innovative therapies, particularly for AD, the most common and worldwide type of dementia.


Asunto(s)
Enfermedad de Alzheimer , Amiloidosis , Envejecimiento , Enfermedad de Alzheimer/metabolismo , Amiloide/metabolismo , Péptidos beta-Amiloides/metabolismo , Animales , Humanos , Invertebrados/metabolismo
4.
Fish Shellfish Immunol ; 127: 492-507, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35803505

RESUMEN

Plastics are a heterogeneous class of synthetic compounds that, due to their unique characteristics find numerous applications both in industrial and civil fields. However, despite the great advantages that these materials brought in everyday life, the plastic wastes resulting from their massive use represent one of the main environmental problems at the global level. Once released, plastics persist for a long time and are subjected both to biotic and abiotic processes leading to the formation of small particles, known as micro and to nanoplastics, that interact with organisms, accumulating inside tissues and risking to enter in the trophic chain. Among the different types of plastic, polypropylene (PP) is one of the diffused, widely exploited in food and textile industries for disposable packaging and to produce surgical masks. Owing to the huge distribution and the resultant abundant presence of PP waste products, it results necessary investigate the possible toxicity on living organisms. For these reasons, here we analyzed the effects of PP micro and nanoplastics dispersed in freshwater, using the medicinal leech Hirudo verbana as invertebrate model. To better follow the plastics fate, fluorescent particles, labeled with a fluorophore, have been used. Animals were examined at various timings after plastics exposure and results were analyzed by means of microscopy, immunofluorescent and molecular biology analyses. After assessing the entrance of PP fragments into leech tissues, the activation of the innate immune response was evaluated. The results show that the presence of micro and nanoplastics induces an initial physical protection that consists in the secretion of mucus, followed by an increase of blood vessels and the recruitment of immune cells, in particular macrophages. Moreover, macrophages were directly involved in both phagocytic and encapsulation processes, as demonstrated by acid phosphatase (ACP) histoenzymatic and Thioflavin-T assays, expressing specific pro-inflammatory factors, such as HvRNASET2 and HmAIF-1, as demonstrated by immunolocalization and qPCR experiments. Finally, the expression levels of genes related to oxidative stress-induced enzymes have been investigated, in order to evaluate the possible increase in reactive oxygen species (ROS), due to the entry into the leech tissues of PP micro and nanoplastics. This work allows deepening the current knowledge of the possible harmful effects on human health deriving from micro and nanoplastics dispersion, leading new insight about freshwater ecosystems that often represent the first environments interested in plastic pollution.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Animales , Ecosistema , Agua Dulce , Humanos , Invertebrados , Microplásticos/toxicidad , Plásticos/toxicidad , Polipropilenos , Contaminantes Químicos del Agua/toxicidad
5.
Immunology ; 167(4): 508-527, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35897164

RESUMEN

Dopamine (DA) affects immune functions in healthy subjects (HS) and during disease by acting on D1-like (D1 and D5) and D2-like (D2, D3 and D4) dopaminergic receptors (DR); however, its effects on human polymorphonuclear leukocytes (PMN) are still poorly defined. We investigated DR expression in human PMN and the ability of DA to affect cell migration and reactive oxygen species (ROS) production. Experiments were performed on cells from HS and from patients (Pts) with bacterial infections as well, during the acute phase and after recovery. Some experiments were also performed in mice knockout (KO) for the DRD5 gene. PMN from HS express both D1-like and D2-like DR, and exposure to DA results in inhibition of activation-induced morphological changes, migration and ROS production which depend on the activation of D1-like DR. In agreement with these findings, DA inhibited migration of PMN obtained from wild-type mice, but not from DRD5KO mice. In Pts with bacterial infections, during the febrile phase D1-like DRD5 on PMN were downregulated and DA failed to affect PMN migration. Both D1-like DRD5 expression and DA-induced inhibition of PMN migration were however restored after recovery. Dopaminergic inhibition of human PMN is a novel mechanism which is likely to play a key role in the regulation of innate immunity. Evidence obtained in Pts with bacterial infections provides novel clues for the therapeutic modulation of PMN during infectious disease.


Asunto(s)
Infecciones Bacterianas , Dopamina , Humanos , Animales , Ratones , Neutrófilos , Especies Reactivas de Oxígeno , Receptores Dopaminérgicos , Receptores de Dopamina D5/genética
6.
Front Physiol ; 12: 632506, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33716780

RESUMEN

Several studies have recently demonstrated that the correct regeneration of damaged tissues and the maintaining of homeostasis after wounds or injuries are tightly connected to different biological events, involving immune response, fibroplasia, and angiogenetic processes, in both vertebrates and invertebrates. In this context, our previous data demonstrated that the Hirudo verbana recombinant protein rHvRNASET2 not only plays a pivotal role in innate immune modulation, but is also able to activate resident fibroblasts leading to new collagen production, both in vivo and in vitro. Indeed, when injected in the leech body wall, which represents a consolidated invertebrate model for studying both immune response and tissue regeneration, HvRNASET2 induces macrophages recruitment, fibroplasia, and synthesis of new collagen. Based on this evidence, we evaluate the role of HvRNASET2 on muscle tissue regeneration and extracellular matrix (ECM) remodeling in rHvRNASET2-injected wounded leeches, compared to PBS-injected wounded leeches used as control. The results presented here not only confirms our previous evidence, reporting that HvRNASET2 leads to an increased collagen production, but also shows that an overexpression of this protein might influence the correct progress of muscle tissue regeneration. Moreover, due to its inhibitory effect on vasculogenesis and angiogenesis, HvRNASET2 apparently interfere with the recruitment of the myoendothelial vessel-associated precursor cells that in turn are responsible for muscle regeneration during wound healing repair.

7.
Int J Mol Sci ; 21(24)2020 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-33352806

RESUMEN

Recent studies performed on the invertebrate model Hirudo verbana (medicinal leech) suggest that the T2 ribonucleic enzyme HvRNASET2 modulates the leech's innate immune response, promoting microbial agglutination and supporting phagocytic cells recruitment in challenged tissues. Indeed, following injection of both lipoteichoic acid (LTA) and Staphylococcus aureus in the leech body wall, HvRNASET2 is expressed by leech type I granulocytes and induces bacterial aggregation to aid macrophage phagocytosis. Here, we investigate the HvRNASET2 antimicrobial role, in particular assessing the effects on the Gram-negative bacteria Escherichia coli. For this purpose, starting from the three-dimensional molecule reconstruction and in silico analyses, the antibacterial activity was evaluated both in vitro and in vivo. The changes induced in treated bacteria, such as agglutination and alteration in wall integrity, were observed by means of light, transmission and scanning electron microscopy. Moreover, immunogold, AMPs (antimicrobial peptides) and lipopolysaccharide (LPS) binding assays were carried out to evaluate HvRNASET2 interaction with the microbial envelopes and the ensuing ability to affect microbial viability. Finally, in vivo experiments confirmed that HvRNASET2 promotes a more rapid phagocytosis of bacterial aggregates by macrophages, representing a novel molecule for counteracting pathogen infections and developing alternative solutions to improve human health.


Asunto(s)
Antibacterianos/farmacología , Escherichia coli/efectos de los fármacos , Hirudo medicinalis/crecimiento & desarrollo , Viabilidad Microbiana/efectos de los fármacos , Ribonucleasas/química , Ribonucleasas/farmacología , Aglutinación , Secuencia de Aminoácidos , Animales , Antibacterianos/química , Péptidos Catiónicos Antimicrobianos/farmacología , Escherichia coli/crecimiento & desarrollo , Escherichia coli/metabolismo , Hirudo medicinalis/efectos de los fármacos , Hirudo medicinalis/metabolismo , Imagenología Tridimensional , Inmunidad Innata , Macrófagos/efectos de los fármacos , Fagocitosis , Conformación Proteica , Homología de Secuencia de Aminoácido
8.
Int J Mol Sci ; 21(15)2020 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-32751344

RESUMEN

Human breast adenocarcinoma cells (MCF7) grow in three-dimensional culture as spheroids that represent the structural complexity of avascular tumors. Therefore, spheroids offer a powerful tool for studying cancer development, aggressiveness, and drug resistance. Notwithstanding the large amount of data regarding the formation of MCF7 spheroids, a detailed description of the morpho-functional changes during their aggregation and maturation is still lacking. In this study, in addition to the already established role of gap junctions, we show evidence of tunneling nanotube (TNT) formation, amyloid fibril production, and opening of large stable cellular bridges, thus reporting the sequential events leading to MCF7 spheroid formation. The variation in cell phenotypes, sustained by dynamic expression of multiple proteins, leads to complex networking among cells similar to the sequence of morphogenetic steps occurring in embryogenesis/organogenesis. On the basis of the observation that early events in spheroid formation are strictly linked to the redox homeostasis, which in turn regulate amyloidogenesis, we show that the administration of N-acetyl-l-cysteine (NAC), a reactive oxygen species (ROS) scavenger that reduces the capability of cells to produce amyloid fibrils, significantly affects their ability to aggregate. Moreover, cells aggregation events, which exploit the intrinsic adhesiveness of amyloid fibrils, significantly decrease following the administration during the early aggregation phase of neutral endopeptidase (NEP), an amyloid degrading enzyme.


Asunto(s)
Acetilcisteína/farmacología , Amiloide/química , Depuradores de Radicales Libres/farmacología , Uniones Comunicantes/ultraestructura , Homeostasis/efectos de los fármacos , Esferoides Celulares/ultraestructura , Amiloide/efectos de los fármacos , Amiloide/metabolismo , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Agregación Celular/efectos de los fármacos , Conexina 43/genética , Conexina 43/metabolismo , Uniones Comunicantes/efectos de los fármacos , Uniones Comunicantes/metabolismo , Expresión Génica , Homeostasis/genética , Humanos , Interleucina-18/genética , Interleucina-18/metabolismo , Células MCF-7 , Neprilisina/farmacología , Oxidación-Reducción , Fenotipo , Proteolisis , Especies Reactivas de Oxígeno/antagonistas & inhibidores , Especies Reactivas de Oxígeno/metabolismo , Factores de Transcripción SOXB1/genética , Factores de Transcripción SOXB1/metabolismo , Esferoides Celulares/efectos de los fármacos , Esferoides Celulares/metabolismo , Antígenos Embrionarios Específico de Estadio/genética , Antígenos Embrionarios Específico de Estadio/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Antígeno gp100 del Melanoma/genética , Antígeno gp100 del Melanoma/metabolismo
9.
J Leukoc Biol ; 104(3): 603-614, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29668114

RESUMEN

This study tests the hypothesis that in isolated human polymorphonuclear leukocytes (PMN) adrenergic ligands can affect neutrophil extracellular trap (NET) formation. We have previously shown that, in PMN, adrenaline (A), through the activation of adrenergic receptors (AR), reduces stimulus-dependent cell activation; we have, therefore, planned to investigate if AR are involved in NET production. PMN were obtained from venous blood of healthy subject. The ability of adrenergic ligands to affect reactive oxygen species (ROS) production, NET production, and cell migration was investigated in cells cultured under resting conditions or after activation with N-formyl-methionyl-leucyl-phenylalanine (fMLP), LPS, or IL-8. Stimuli-induced NET production measured as ROS, microscopic evaluation, and elastase production was reverted by A and this effect was blocked by the selective ß2 -AR antagonist ICI-118,551. The stimulus-induced ROS generation and migration was prevented by A and by isoprenaline (ISO), and these effects were counteracted only by ICI-118,551 and not by the other two selective ligands for the ß1 and ß3 -AR. Finally, the presence of the ß-ARs on PMN was confirmed, by means of microscopy and flow cytometry. The data of the present study suggest that adrenergic compounds, through the interaction of mainly ß2 -AR, are able to affect neutrophil functions. These data are suggestive of a possible therapeutic role of ß2 -AR ligands (in addition to their classical use), promoting the possible therapeutic relevance of adrenergic system in the modulation of innate immunity proposing their possible use as anti-inflammatory drugs.


Asunto(s)
Trampas Extracelulares/metabolismo , Neutrófilos/metabolismo , Receptores Adrenérgicos beta 2/metabolismo , Células Cultivadas , Trampas Extracelulares/inmunología , Humanos , Neutrófilos/inmunología , Receptores Adrenérgicos beta 2/inmunología
10.
Sci Rep ; 7(1): 13580, 2017 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-29051571

RESUMEN

Telocytes, a peculiar cell type, were recently found in vertebrates. Hence this cell system has been reported as ubiquitous in the bodies of mammals and interpreted as an important player in innate immunity and tissue regeneration, it is reasonable to look for it also in invertebrates, that rely their integrity solely by innate immunity. Here we describe, at morphological and functional level, invertebrate telocytes from the body of leech Hirudo medicinalis (Annelida), suggesting how these cells, forming a resident stromal 3D network, can influence or participate in different events. These findings support the concepts that leech telocytes: i) are organized in a cellular dynamic and versatile 3D network likewise the vertebrate counterpart; ii) are an evolutionarily conserved immune-neuroendocrine system; iii) form an immuno-surveillance system of resident cells responding faster than migrating immunocytes recruited in stimulated area; iv) communicate with neighbouring cells directly and indirectly, via cell-cell contacts and soluble molecules secreted by multivesicular bodies; v) present within neo-vessels, share with immunocytes the mesodermal lineage; vi) are involved in regenerative processes. In conclusion, we propose that HmTCs, integrating so different functions, might explain the innate immune memory and can be associated with several aged related diseases.


Asunto(s)
Hirudo medicinalis/citología , Hirudo medicinalis/fisiología , Animales , Biomarcadores/metabolismo , Inmunidad Celular , Microscopía Electrónica de Transmisión , Sistemas Neurosecretores/citología , Cicatrización de Heridas
11.
Int J Nanomedicine ; 10: 6133-45, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26457053

RESUMEN

Carbon nanotubes (CNTs) have been extensively investigated and employed for industrial use because of their peculiar physical properties, which make them ideal for many industrial applications. However, rapid growth of CNT employment raises concerns about the potential risks and toxicities for public health, environment, and workers associated with the manufacture and use of these new materials. Here we investigate the main routes of entry following environmental exposure to multi-wall CNTs (MWCNTs; currently the most widely used in industry). We developed a novel murine model that could represent a surrogate of a workplace exposure to MWCNTs. We traced the localization of MWCNTs and their possible role in inducing an innate immune response, inflammation, macrophage recruitment, and inflammatory conditions. Following environmental exposure of CD1 mice, we observed that MWCNTs rapidly enter and disseminate in the organism, initially accumulating in lungs and brain and later reaching the liver and kidney via the bloodstream. Since recent experimental studies show that CNTs are associated with the aggregation process of proteins associated with neurodegenerative diseases, we investigated whether MWCNTs are able to induce amyloid fibril production and accumulation. Amyloid deposits in spatial association with macrophages and MWCNT aggregates were found in the brain, liver, lungs, and kidneys of exposed animals. Our data suggest that accumulation of MWCNTs in different organs is associated with inflammation and amyloid accumulation. In the brain, where we observed rapid accumulation and amyloid fibril deposition, exposure to MWCNTs might enhance progression of neurodegenerative and other amyloid-related diseases. Our data highlight the conclusion that, in a novel rodent model of exposure, MWCNTs may induce macrophage recruitment, activation, and amyloid deposition, causing potential damage to several organs.


Asunto(s)
Amiloide/química , Exposición a Riesgos Ambientales/efectos adversos , Inflamación/inducido químicamente , Macrófagos/efectos de los fármacos , Modelos Biológicos , Nanotubos de Carbono/toxicidad , Amiloide/efectos de los fármacos , Animales , Técnica del Anticuerpo Fluorescente , Inflamación/patología , Hígado/efectos de los fármacos , Hígado/patología , Pulmón/efectos de los fármacos , Pulmón/patología , Masculino , Ratones , Microscopía Electrónica de Transmisión , Nanotubos de Carbono/química
12.
Front Oncol ; 4: 131, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25072019

RESUMEN

It is widely accepted that the tumor microenvironment (TUMIC) plays a major role in cancer and is indispensable for tumor progression. The TUMIC involves many "players" going well beyond the malignant-transformed cells, including stromal, immune, and endothelial cells (ECs). The non-malignant cells can acquire tumor-promoting functions during carcinogenesis. In particular, these cells can "orchestrate" the "symphony" of the angiogenic switch, permitting the creation of new blood vessels that allows rapid expansion and progression toward malignancy. Considerable attention within the context of tumor angiogenesis should focus not only on the ECs, representing a fundamental unit, but also on immune cells and on the inflammatory tumor infiltrate. Immune cells infiltrating tumors typically show a tumor-induced polarization associated with attenuation of anti-tumor functions and generation of pro-tumor activities, among these angiogenesis. Here, we propose a scenario suggesting that the angiogenic switch is an immune switch arising from the pro-angiogenic polarization of immune cells. This view links immunity, inflammation, and angiogenesis to tumor progression. Here, we review the data in the literature and seek to identify the "conductors" of this "orchestra." We also suggest that interrupting the immune → inflammation → angiogenesis → tumor progression process can delay or prevent tumor insurgence and malignant disease.

13.
Nat Cell Biol ; 12(9): 863-75, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20711182

RESUMEN

Accumulation of unwanted/misfolded proteins in aggregates has been observed in airways of patients with cystic fibrosis (CF), a life-threatening genetic disorder caused by mutations in the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR). Here we show how the defective CFTR results in defective autophagy and decreases the clearance of aggresomes. Defective CFTR-induced upregulation of reactive oxygen species (ROS) and tissue transglutaminase (TG2) drive the crosslinking of beclin 1, leading to sequestration of phosphatidylinositol-3-kinase (PI(3)K) complex III and accumulation of p62, which regulates aggresome formation. Both CFTR knockdown and the overexpression of green fluorescent protein (GFP)-tagged-CFTR(F508del) induce beclin 1 downregulation and defective autophagy in non-CF airway epithelia through the ROS-TG2 pathway. Restoration of beclin 1 and autophagy by either beclin 1 overexpression, cystamine or antioxidants rescues the localization of the beclin 1 interactome to the endoplasmic reticulum and reverts the CF airway phenotype in vitro, in vivo in Scnn1b-transgenic and Cftr(F508del) homozygous mice, and in human CF nasal biopsies. Restoring beclin 1 or knocking down p62 rescued the trafficking of CFTR(F508del) to the cell surface. These data link the CFTR defect to autophagy deficiency, leading to the accumulation of protein aggregates and to lung inflammation.


Asunto(s)
Autofagia , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Fibrosis Quística/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Acetilcisteína/farmacología , Acetilcisteína/uso terapéutico , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Adolescente , Adulto , Animales , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Autofagia/efectos de los fármacos , Autofagia/genética , Beclina-1 , Línea Celular , Cistamina/farmacología , Cistamina/uso terapéutico , Fibrosis Quística/tratamiento farmacológico , Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/antagonistas & inhibidores , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Canales Epiteliales de Sodio/genética , Proteínas de Unión al GTP , Proteínas de Choque Térmico/metabolismo , Humanos , Inflamación/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos CFTR , Ratones Endogámicos , Ratones Transgénicos , Proteínas Asociadas a Microtúbulos/metabolismo , Modelos Biológicos , Pólipos Nasales/tratamiento farmacológico , Pólipos Nasales/metabolismo , Compuestos Organometálicos/farmacología , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3 , Unión Proteica/fisiología , Proteína Glutamina Gamma Glutamiltransferasa 2 , Transporte de Proteínas/genética , Especies Reactivas de Oxígeno/antagonistas & inhibidores , Mucosa Respiratoria/citología , Mucosa Respiratoria/efectos de los fármacos , Mucosa Respiratoria/metabolismo , Salicilatos/farmacología , Proteína Sequestosoma-1 , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Transglutaminasas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...