Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Bioorg Med Chem ; 28(3): 115260, 2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-31870833

RESUMEN

Mitoxantrone is an anticancer anthracenedione that can be activated by formaldehyde to generate covalent drug-DNA adducts. Despite their covalent nature, these DNA lesions are relatively labile. It was recently established that analogues of mitoxantrone featuring extended side-chains terminating in primary amino groups typically yielded high levels of stable DNA adducts following their activation by formaldehyde. In this study we describe the DNA sequence-specific binding properties of the mitoxantrone analogue WEHI-150 which is the first anthracenedione to form apparent DNA crosslinks mediated by formaldehyde. The utility of this compound lies in the versatility of the covalent binding modes displayed. Unlike other anthracenediones described to date, WEHI-150 can mediate covalent adducts that are independent of interactions with the N-2 of guanine and is capable of adduct formation at novel DNA sequences. Moreover, these covalent adducts incorporate more than one formaldehyde-mediated bond with DNA, thus facilitating the formation of highly lethal DNA crosslinks. The versatility of binding observed is anticipated to allow the next generation of anthracenediones to interact with a broader spectrum of nucleic acid species than previously demonstrated by the parent compounds, thus allowing for more diverse biological activities.


Asunto(s)
ADN/efectos de los fármacos , Formaldehído/farmacología , Mitoxantrona/farmacología , Animales , Bovinos , Relación Dosis-Respuesta a Droga , Formaldehído/química , Espectrometría de Masas , Mitoxantrona/análogos & derivados , Mitoxantrona/química , Modelos Moleculares , Estructura Molecular , Relación Estructura-Actividad
2.
Pharmacogenet Genomics ; 28(6): 153-164, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29768302

RESUMEN

Papua New Guinea (PNG) can be roughly divided into highland, coastal and island peoples with significant mitochondrial DNA differentiation reflecting early and recent distinct migrations from Africa and East Asia, respectively. Infectious diseases such as tuberculosis, malaria and HIV severely impact on the health of its peoples for which drug therapy is the major treatment and pharmacogenetics has clinical relevance for many of these drugs. Although there is generally little information about known single nucleotide polymorphisms in the population, in some instances, their frequencies have been shown to be higher than anywhere worldwide. For example, CYP2B6*6 is over 50%, and CYP2C19*2 and *3 are over 40 and 25%, respectively. Conversely, CYP2A6*9, 2B6*2, *3, *4 and *18, and 2C8*3 appear to be much lower than in Whites. CYP2D6 known variants are unclear, and for phase II enzymes, only UGT2B7 and UGT1A9 data are available, with variant frequencies either slightly lower than or similar to Whites. Although almost all PNG people tested are rapid acetylators, but which variant(s) define this phenotype is not known. For HLA-B*13:01, HLA-B*35:05 and HLA-C*04:01, the frequencies show some regioselectivity, but the clinical implications with respect to adverse drug reactions are not known. There are minimal phenotype data for the CYPs and nothing is known about drug transporter or receptor genetics. Determination of genetic variants that are rare in Whites or Asians but common in PNG people is a topic of both scientific and clinical importance, and further research needs to be carried out. Optimizing the safety and efficacy of infectious disease drug therapy through pharmacogenetic studies that have translation potential is a priority.


Asunto(s)
Población Negra/genética , Variantes Farmacogenómicas , Polimorfismo de Nucleótido Simple , Población Negra/etnología , Familia 2 del Citocromo P450/genética , Glucuronosiltransferasa/genética , Antígenos HLA-B/genética , Antígenos HLA-C/genética , Humanos , Papúa Nueva Guinea/etnología , UDP Glucuronosiltransferasa 1A9
3.
Org Biomol Chem ; 14(20): 4728-38, 2016 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-27142235

RESUMEN

The ability of a bis-amino mitoxantrone anticancer drug (named WEHI-150) to form covalent adducts with DNA, after activation by formaldehyde, has been studied by electrospray ionisation mass spectrometry and HPLC. Mass spectrometry results showed that WEHI-150 could form covalent adducts with d(ACGCGCGT)2 that contained one, two or three covalent links to the octanucleotide, whereas the control drugs (daunorubicin and the anthracenediones mitoxantrone and pixantrone) only formed adducts with one covalent link to the octanucleotide. HPLC was used to examine the extent of covalent bond formation of WEHI-150 with d(CGCGCG)2 and d(CG(5Me)CGCG)2. Incubation of WEHI-150 with d(CG(5Me)CGCG)2 in the presence of formaldehyde resulted in the formation of significantly greater amounts of covalent adducts than was observed with d(CGCGCG)2. In order to understand the observed increase of covalent adducts with d(CG(5Me)CGCG)2, an NMR study of the reversible interaction of WEHI-150 at both CpG and (5Me)CpG sites was undertaken. Intermolecular NOEs were observed in the NOESY spectra of d(ACGGCCGT)2 with added WEHI-150 that indicated that the drug selectively intercalated at the CpG sites and from the major groove. In particular, NOEs were observed from the WEHI-150 H2,3 protons to the H1' protons of G3 and G7 and from the H6,7 protons to the H5 protons of C2 and C6. By contrast, intermolecular NOEs were observed between the WEHI-150 H2,3 protons to the H2'' proton of the (5Me)C3 in d(CG(5Me)CGCG)2, and between the drug aliphatic protons and the H1' proton of G4. This demonstrated that WEHI-150 preferentially intercalates at (5Me)CpG sites, compared to CpG sequences, and predominantly via the minor groove at the (5Me)CpG site. The results of this study demonstrate that WEHI-150 is likely to form interstrand DNA cross-links, upon activation by formaldehyde, and consequently exhibit greater cytotoxicity than other current anthracenedione drugs.


Asunto(s)
ADN/química , Formaldehído/química , Mitoxantrona/química , Secuencia de Bases , Catálisis , ADN/genética , Modelos Moleculares , Conformación de Ácido Nucleico
4.
Biochem Pharmacol ; 82(11): 1604-18, 2011 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-21889927

RESUMEN

Pixantrone is a promising anti-cancer aza-anthracenedione that has prompted the development of new anthracenediones incorporating symmetrical side-chains of increasing length varying from two to five methylene units in each pair of drug side-chains. A striking relationship has emerged in which anthracenedione-induced growth inhibition and apoptosis was inversely associated with side-chain length, a relationship that was attributable to a differential ability to stabilise the topoisomerase II (TOP2) cleavage complex. Processing of the complex to a DNA double strand break (DSB) flanked by γH2AX in nuclear foci is likely to occur, as the generation of the primary lesion was antecedent to γH2AX induction. M2, bearing the shortest pair of side-chains, induced TOP2-mediated DSBs efficiently and activated cell cycle checkpoints via Chk1 and Chk2 phosphorylation, implicating the involvement of ATM and ATR, and induced a protracted S phase and subsequent G2/M arrest. The inactive analogue M5, containing the longest pair of side-chains, only weakly stimulated any of these responses, suggesting that efficient stabilisation of the TOP2 cleavage complex was crucial for eliciting a strong DNA damage response (DDR). An M2 induced DDR in p53-defective MDA-MB-231 cells was abrogated by UCN-01, a ubiquitous inhibitor of kinases including Chk1, in a response associated with substantial mitotic catastrophe and strong synergy. The rational selection of checkpoint kinase inhibitors may significantly enhance the therapeutic benefit of anthracenediones that efficiently stabilise the TOP2 cleavage complex.


Asunto(s)
Antraquinonas/farmacología , Antineoplásicos/farmacología , Daño del ADN/efectos de los fármacos , Mitosis/efectos de los fármacos , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Animales , Antraquinonas/química , Antígenos de Neoplasias , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Bovinos , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1) , Quinasa de Punto de Control 2 , ADN/química , ADN-Topoisomerasas de Tipo II , Proteínas de Unión al ADN/antagonistas & inhibidores , Ensayos de Selección de Medicamentos Antitumorales , Sinergismo Farmacológico , Histonas/biosíntesis , Humanos , Permeabilidad , Fosforilación , Proteínas de Unión a Poli-ADP-Ribosa , Proteínas Serina-Treonina Quinasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Estaurosporina/análogos & derivados , Estaurosporina/farmacología , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...