Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Biomater Sci Eng ; 9(2): 1116-1131, 2023 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-36720672

RESUMEN

The global pandemic of COVID-19 and emerging antimicrobial drug resistance highlights the need for sustainable technology that enables more preparedness and active control measures. It is thus important to have a reliable solution to avert the present situations as well as preserve nature for habitable life in the future. One time use of PPE kits is promoting the accumulation of nondegradable waste, which may pose an unforeseen challenge in the future. We have developed a biocompatible, biodegradable, and nonirritating nanoemulsion coating for textiles. The study focused on coating cotton fabric to functionalize it with broad spectrum antimicrobial, antibiofilm, and anti-SARS-CoV-2 activity. The nanoemulsion comprises spherical particles of chitosan, oleic acid, and eugenol that are cross-linked to fibers. The nanoemulsion caused complete destruction of pathogens even for the most rigid biofilms formed by drug resistant Staphylococcus aureus, Pseudomonas aeruginosa, and Candida albicans on the surface of the coated fabric. The secondary coat with beeswax imparts super hydrophobicity and 20 wash cycle resistance and leads to enhanced barrier properties with superior particulate filtration, bacterial filtration, and viral penetration efficiency as compared to an N95 respirator. The coated fabric qualifies as per standard parameters like breathability, flammability, splash resistance, and filtration efficiency for submicrometer particles, bacteria, and viruses. The scaleup and bulk manufacturing of the coating technology on fabric masks complied with standards. The consumer feedback rated the coated mask with high scores in breathability and comfortability as compared to an N95. The strategy promises to provide a long-term sustainable model compared to single use masks and PPE that will remain a nondegradable burden on the ecosystem for years to come.


Asunto(s)
Antiinfecciosos , COVID-19 , Staphylococcus aureus Resistente a Meticilina , Humanos , COVID-19/epidemiología , COVID-19/prevención & control , Pandemias/prevención & control , Ecosistema , Máscaras , Textiles , Antiinfecciosos/farmacología , Biopolímeros
2.
Bioconjug Chem ; 33(8): 1552-1563, 2022 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-35920551

RESUMEN

The WHO estimates an average of 10 million deaths per year due to the increasing number of infections and the predominance of drug resistance. To improve clinical outcomes and contain the spread of infections, the development of newer diagnostic tools is imperative to reduce the time and cost involved to reach the farthest population. The current study focuses on the development of a point-of-care technology that uses crystal violet entrapped, lectin functionalized chitosan nanoparticles to detect the presence of clinically relevant bacterial infections. Spherical nanoparticles of <200 nm in diameter make up the biosensing nanomaterial, showed specific clumping in the presence of bacteria to form visible aggregates as compared to a nonbacterial sample. Visible agglutination confirmed the presence of bacteria in the samples. The devices require just 100 µL of sample and were tested with various bacteria-spiked saline, simulated urine, artificial sputum, and simulated respiratory and wound swabs. The developed device did not require any sample preparation or sophisticated instruments while enabling rapid differentiation between bacterial and nonbacterial infections within 10 min. The in vitro results with bacteria-spiked simulated samples reveal 100% sensitivity and specificity with a limit of detection of 105 cfu/mL. The nanomaterial developed was found to be stable for more than 90 days at accelerated conditions. The developed device can be a screening tool for home-based or clinical assessment and follow the treatment accordingly, reducing exposure to broad-spectrum antibiotics in the case of nonbacterial infections.


Asunto(s)
Infecciones Bacterianas , Técnicas Biosensibles , Quitosano , Nanopartículas , Bacterias , Infecciones Bacterianas/diagnóstico , Técnicas Biosensibles/métodos , Humanos , Lectinas , Sistemas de Atención de Punto
3.
ACS Biomater Sci Eng ; 8(6): 2232-2257, 2022 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-35546526

RESUMEN

As declared by WHO, antimicrobial resistance (AMR) is a high priority issue with a pressing need to develop impactful technologies to curb it. The rampant and inappropriate use of antibiotics due to the lack of adequate and timely diagnosis is a leading cause behind AMR evolution. Unfortunately, populations with poor economic status and those residing in densely populated areas are the most affected ones, frequently leading to emergence of AMR pathogens. Classical approaches for AMR diagnostics like phenotypic methods, biochemical assays, and molecular techniques are cumbersome and resource-intensive and involve a long turnaround time to yield confirmatory results. In contrast, recent emergence of nanotechnology-assisted approaches helps to overcome challenges in classical approaches and offer simpler, more sensitive, faster, and more affordable solutions for AMR diagnostics. Nanomaterial platforms (metallic, quantum-dot, carbon-based, upconversion, etc.), nanoparticle-based rapid point-of-care platforms, nano-biosensors (optical, mechanical, electrochemical), microfluidic-assisted devices, and importantly, nanotheranostic devices for diagnostics with treatment of AMR infections are examples of rapidly growing nanotechnology approaches used for AMR management. This review comprehensively summarizes the past 10 years of research progress on nanotechnology approaches for AMR diagnostics and for estimating antimicrobial susceptibility against commonly used antibiotics. This review also highlights several bottlenecks in nanotechnology approaches that need to be addressed prior to considering their translation to clinics.


Asunto(s)
Infecciones Bacterianas , Farmacorresistencia Bacteriana , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Bacterias , Infecciones Bacterianas/diagnóstico , Infecciones Bacterianas/tratamiento farmacológico , Infecciones Bacterianas/microbiología , Humanos , Nanotecnología , Medicina de Precisión
4.
J Mater Chem B ; 8(29): 6296-6306, 2020 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-32441292

RESUMEN

Globally, rapid development of antibiotic resistance amongst pathogens has led to limited treatment options and high indirect costs to health management. There is a need to avoid misuse of available antibiotics and to develop rapid, affordable and accessible diagnostic technologies to detect drug resistance even in resource limited settings. This study reports the development of instrument-free point-of-care devices for detection of antibiotic resistance for rapid diagnosis of drug resistance in the penicillin, cephalosporin and carbapenem groups of antibiotics. The simple paper-based devices for flow through assay determine the presence of resistant bacteria in a sample by a visible colour change within 30 minutes. At the center of this technology is the unique sensing nanomaterial comprising of core-shell nanoparticles layered with specific antibiotics. The core is comprised of chitosan nanoparticles of size ∼15 nm coated with the starch-iodine indicator to form a shell increasing the size to ∼47 nm. The test strip is coated with the nanoparticles, air-dried and overlayed with the required antibiotic. In the presence of penicillin, cephalosporin and carbapenem resistant bacteria, the core-shell nanoparticles undergo a visible colour change from blue to white. The core-shell nanoparticles were deposited on paper to form a point-of-care device. Devices were developed to screen for three main classes of antibiotics namely penicillins, cephalosporins and carbapenems. The devices were validated using standard resistant and susceptible ATCC strains in three different sample types, pure colony, broth culture and saline suspensions. The change of colour from blue to white was considered a positive test. The time of detection was found to be 30 min, while the limit of detection was 105 cfu ml-1. The device exhibited 100% sensitivity and specificity with known resistant and susceptible cultures not only from pure colonies but also from direct samples of spiked saline suspensions with graded confounding factors of albumin, glucose, and urea. The inter-device reproducibility and storage stability of the devices was established. The developed point-of-care devices have potential as screening devices for antimicrobial resistance.


Asunto(s)
Antibacterianos/farmacología , Farmacorresistencia Bacteriana , Nanopartículas , Nanotecnología/instrumentación , Papel , Pruebas en el Punto de Atención , Factores de Tiempo
5.
Front Microbiol ; 9: 2207, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30294309

RESUMEN

Biosynthesis of metallic nanoparticles has acquired particular attention due to its economic feasibility, low toxicity, and simplicity of the process. In this study, extracellular synthesis of silver and zinc nanoparticle was carried out by Pseudomonas hibiscicola isolated from the effluent of an electroplating industry in Mumbai. Characterization studies revealed synthesis of 40 and 60 nm nanoparticles of silver (AgNP) and zinc (ZnNP), respectively, with distinct morphology as observed in TEM and its crystalline nature confirmed by XRD. DLS, zeta potential, NTA, and FTIR studies further characterized nanoparticles giving data about its size, stability, and functional groups. Considering the toxicity of nanoparticles the evaluation of antimicrobial activity was studied in the range of non-toxic concentration for normal cell lines. Silver nanoparticles were found to be the most effective antimicrobial against all tested strains and drug-resistant clinical isolates of MRSA, VRE, ESBL, MDR, Pseudomonas aeruginosa with MIC in the range of 1.25-5 mg/ml. Zinc nanoparticles were found to be specifically active against Gram-positive bacteria like Staphylococcus aureus including its drug-resistant variant MRSA. Both AgNP and ZnNP were found to be effective against Mycobacterium tuberculosis and its MDR strain with MIC of 1.25 mg/ml. The synergistic action of nanoparticles assessed in combination with a common antibiotic gentamicin (590 µg/mg) used for the treatment of various bacterial infections by Checker board assay. Silver nanoparticles profoundly exhibited synergistic antimicrobial activity against drug-resistant strains of MRSA, ESBL, VRE, and MDR P. aeruginosa while ZnNP were found to give synergism with gentamicin only against MRSA. The MRSA, ESBL, and P. aeruginosa strains exhibited MIC of 2.5 mg/ml except VRE which was 10 mg/ml for both AgNPs and ZnNPs. These results prove the great antimicrobial potential of AgNP and ZnNP against drug-resistant strains of community and hospital-acquired infections and opens a new arena of antimicrobials for treatment, supplementary prophylaxis, and prevention therapy.

6.
IET Nanobiotechnol ; 11(5): 584-590, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28745293

RESUMEN

The aim of this study was to isolate and screen bacteria from soil and effluent of electroplating industries for the synthesis of silver nanoparticles and characterize the potential isolate. Soil and effluent of electroplating industries from Mumbai were screened for bacteria capable of synthesizing silver nanoparticles. From two soils and eight effluent samples 20 bacterial isolates were obtained, of these, one was found to synthesize silver nanoparticles. Synthesis of silver nanoparticle by bacteria was confirmed by undertaking characterization studies of nanoparticles that involved spectroscopy and electron microscopic techniques. The potential bacteria was found to be Gram-negative short rods with its biochemical test indicating Pseudomonas spp. Molecular characterization of the isolate by 16S r DNA sequencing was carried out which confirmed its relation to Pseudomonas hibiscicola ATCC 19867. Stable nanoparticles synthesized were 50 nm in size and variable shapes as seen in SEM micrographs. The XRD and FTIR confirmed the crystalline structure of nanoparticles and presence of biomolecules mainly proteins as agents for reduction and capping of nanoparticles. The study demonstrates synthesis of nanoparticles by bacteria from effluent of electroplating industry. This can be used for large scale synthesis of nanoparticles by cost effective and environmentally benign mode of synthesis.


Asunto(s)
Técnicas Electroquímicas/métodos , Residuos Industriales , Nanopartículas del Metal/química , Pseudomonas/metabolismo , Plata/química , ADN Ribosómico/genética , Microscopía Electrónica de Rastreo , Pseudomonas/genética , ARN Ribosómico 16S/genética , Microbiología del Suelo , Microbiología del Agua , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...