Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Chem Neurosci ; 14(24): 4383-4394, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38050970

RESUMEN

Parkinson's disease (PD) is characterized by extrapyramidal motor disturbances and nonmotor cognitive impairments which impact activities of daily living. Although the etiology of PD is still obscure, autopsy reports suggest that oxidative stress (OS) is one of the important factors in the pathophysiology of PD. In the current study, we have investigated the impact of OS in PD by measuring the antioxidant glutathione (GSH) levels from the substantia nigra (SN), left hippocampus (LH) and neurotransmitter γ-amino butyric acid (GABA) levels from SN region. Concomitant quantitative susceptibility mapping (QSM) from SN and LH was also acquired from thirty-eight PD patients and 30 age-matched healthy controls (HC). Glutathione levels in the SN region decreased significantly and susceptibility increased significantly in PD compared to HC. Nonsignificant depletion of GABA was observed in the SN region. GSH levels in the LH region were depleted significantly, but LH susceptibility did not alter in the PD cohort compared to HC. Neuropsychological and physical assessment demonstrated significant impairment of cognitive functioning in PD patients compared to HC. GSH depletion was negatively correlated to motor function performance. Multivariate receiver operating characteristic (ROC) curve analysis on the combined effect of GSH, GABA, and susceptibility in the SN region yielded an improved diagnostic accuracy of 86.1% compared to individual diagnostic accuracy based on GSH (65.8%), GABA (57.5%), and susceptibility (69.6%). This is the first comprehensive report in PD demonstrating significant GSH depletion as well as concomitant iron enhancement in the SN region.


Asunto(s)
Enfermedad de Parkinson , Humanos , Actividades Cotidianas , Imagen por Resonancia Magnética/métodos , Sustancia Negra , Glutatión , Espectroscopía de Resonancia Magnética , Ácido gamma-Aminobutírico
2.
Brain Commun ; 4(5): fcac215, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36072647

RESUMEN

Oxidative stress has been implicated in Alzheimer's disease, and it is potentially driven by the depletion of primary antioxidant, glutathione, as well as elevation of the pro-oxidant, iron. Present study evaluates glutathione level by magnetic resonance spectroscopy, iron deposition by quantitative susceptibility mapping in left hippocampus, as well as the neuropsychological scores of healthy old participants (N = 25), mild cognitive impairment (N = 16) and Alzheimer's disease patients (N = 31). Glutathione was found to be significantly depleted in mild cognitive impaired (P < 0.05) and Alzheimer's disease patients (P < 0.001) as compared with healthy old participants. A significant higher level of iron was observed in left hippocampus region for Alzheimer's disease patients as compared with healthy old (P < 0.05) and mild cognitive impairment (P < 0.05). Multivariate receiver-operating curve analysis for combined glutathione and iron in left hippocampus region provided diagnostic accuracy of 82.1%, with 81.8% sensitivity and 82.4% specificity for diagnosing Alzheimer's disease patients from healthy old participants. We conclude that tandem glutathione and iron provides novel avenue to investigate further research in Alzheimer's disease.

3.
J Alzheimers Dis ; 84(3): 1139-1152, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34633325

RESUMEN

BACKGROUND: Oxidative stress plays a major role in Alzheimer's disease (AD) pathogenesis, and thus, antioxidant glutathione (GSH) has been actively investigated in mitigating the oxidative load. Significant hippocampal GSH depletion has been correlated with cognitive impairment in AD. Furthermore, postmortem studies indicated alterations in cellular-energy metabolism and hippocampal pH change toward alkalinity in AD. OBJECTIVE: Concurrent analysis of hippocampal GSH and pH interplay in vivo on the same individual is quite unclear and hence requires investigation to understand the pathological events in AD. METHODS: Total 39 healthy old (HO), 22 mild cognitive impairment (MCI), and 37 AD patients were recruited for hippocampal GSH using 1H-MRS MEGA-PRESS and pH using 2D 31P-MRSI with dual tuned (1H/31P) transmit/receive volume head coil on 3T-Philips scanner. All MRS data processing using KALPANA package and statistical analysis were performed MedCalc, respectively and NINS-STAT package. RESULTS: Significant GSH depletion in the left and right hippocampus (LH and RH) among MCI and AD study groups as compared to HO was observed, whereas pH increased significantly in the LH region between HO and AD. Hippocampal GSH level negatively correlated with pH in both patient groups. The ROC analysis on the combined effect of GSH and pH in both hippocampal regions give accuracy for MCI (LH: 78.27%; RH: 86.96%) and AD (LH: 88%; RH: 78.26%) groups differentiating from HO. CONCLUSION: Outcomes from this study provide further insights to metabolic alterations in terms of concurrent assessment of hippocampal GSH and pH levels in AD pathogenesis, aiding in early diagnosis of MCI and AD.


Asunto(s)
Enfermedad de Alzheimer/diagnóstico , Disfunción Cognitiva/diagnóstico , Glutatión/metabolismo , Hipocampo/metabolismo , Concentración de Iones de Hidrógeno , Anciano , Femenino , Humanos , Espectroscopía de Resonancia Magnética , Masculino , Estrés Oxidativo/fisiología , Espectroscopía de Protones por Resonancia Magnética
4.
J Alzheimers Dis ; 83(2): 523-530, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34250939

RESUMEN

Coronavirus (COVID-19) has emerged as a human catastrophe worldwide, and it has impacted human life more detrimentally than the combined effect of World Wars I and II. Various research studies reported that the disease is not confined to the respiratory system but also leads to neurological and neuropsychiatric disorders suggesting that the virus is potent to affect the central nervous system (CNS). Moreover, the damage to CNS may continue to rise even after the COVID-19 infection subsides which may further induce a long-term impact on the brain, resulting in cognitive impairment. Neuroimaging techniques is the ideal platform to detect and quantify pathological manifestations in the brain of COVID-19 survivors. In this context, a scheme based on structural, spectroscopic, and behavioral studies could be executed to monitor the gradual changes in the brain non-invasively due to COVID-19 which may further help in quantifying the impact of COVID-19 on the mental health of the survivors. Extensive research is required in this direction for identifying the mechanism and implications of COVID-19 in the brain. Cohort studies are urgently required for monitoring the effects of this pandemic on individuals of various subtypes longitudinally.


Asunto(s)
Encéfalo/diagnóstico por imagen , COVID-19/complicaciones , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/virología , Encéfalo/patología , Mapeo Encefálico/métodos , COVID-19/diagnóstico por imagen , COVID-19/patología , Disfunción Cognitiva/patología , Humanos , Espectroscopía de Resonancia Magnética , Estrés Oxidativo/fisiología , SARS-CoV-2 , Sobrevivientes , Síndrome Post Agudo de COVID-19
5.
J Alzheimers Dis ; 83(1): 305-317, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34308905

RESUMEN

BACKGROUND: In vivo neuroimaging modalities such as magnetic resonance imaging (MRI), functional MRI (fMRI), magnetoencephalography (MEG), magnetic resonance spectroscopy (MRS), and quantitative susceptibility mapping (QSM) are useful techniques to understand brain anatomical structure, functional activity, source localization, neurochemical profiles, and tissue susceptibility respectively. Integrating unique and distinct information from these neuroimaging modalities will further help to enhance the understanding of complex neurological diseases. OBJECTIVE: To develop a processing scheme for multimodal data integration in a seamless manner on healthy young population, thus establishing a generalized framework for various clinical conditions (e.g., Alzheimer's disease). METHODS: A multimodal data integration scheme has been developed to integrate the outcomes from multiple neuroimaging data (fMRI, MEG, MRS, and QSM) spatially. Furthermore, the entire scheme has been incorporated into a user-friendly toolbox- "PRATEEK". RESULTS: The proposed methodology and toolbox has been tested for viability among fourteen healthy young participants. The data-integration scheme was tested for bilateral occipital cortices as the regions of interest and can also be extended to other anatomical regions. Overlap percentage from each combination of two modalities (fMRI-MRS, MEG-MRS, fMRI-QSM, and fMRI-MEG) has been computed and also been qualitatively assessed for combinations of the three (MEG-MRS-QSM) and four (fMRI-MEG-MRS-QSM) modalities. CONCLUSION: This user-friendly toolbox minimizes the need of an expertise in handling different neuroimaging tools for processing and analyzing multimodal data. The proposed scheme will be beneficial for clinical studies where geometric information plays a crucial role for advance brain research.


Asunto(s)
Investigación Biomédica , Encéfalo , Imagen Multimodal , Neuroimagen , Adulto , Femenino , Voluntarios Sanos , Humanos , Procesamiento de Imagen Asistido por Computador , Masculino
6.
Magn Reson Imaging ; 70: 5-21, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-31917995

RESUMEN

Differences in brain morphology across population groups necessitate creation of population-specific Magnetic Resonance Imaging (MRI) brain templates for interpretation of neuroimaging data. Variations in the neuroanatomy in a genetically heterogeneous population make the development of a population-specific brain template for the Indian subcontinent imperative. A dataset of high-resolution 3D T1, T2-weighted, and FLAIR images acquired from a group of 113 volunteers (M/F - 56/57, mean age-28.96 ±â€¯7.80 years) are used to construct T1, T2-weighted, and FLAIR templates, collectively referred to as Indian Brain Template, "BRAHMA". A processing pipeline is developed and implemented in a MATLAB based toolbox for template construction and generation of tissue probability maps and segmentation atlases, with additional labels for deep brain regions such as the Substantia Nigra generated from the T2-weighted and FLAIR templates. The use of BRAHMA template for analysis of structural and functional neuroimaging data obtained from Indian participants, provides improved accuracy with statistically significant results over that obtained using the ICBM-152 (International Consortium for Brain Mapping) template. Our results indicate that segmentations generated on structural images are closer in volume to those obtained from registration to the BRAHMA template than to the ICBM-152. Furthermore, functional MRI data obtained for Working Memory and Finger Tapping paradigms processed using the BRAHMA template show a significantly higher percentage of the activation area than ICBM-152 in relevant brain regions, i.e. the left middle frontal gyrus, and the left and right precentral gyri, respectively. The availability of different image contrasts, tissue maps, and segmentation atlases makes the BRAHMA template a comprehensive tool for multi-modal image analysis in laboratory and clinical settings.


Asunto(s)
Mapeo Encefálico , Encéfalo/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/métodos , Adulto , Algoritmos , Pueblo Asiatico , Encéfalo/patología , Medios de Contraste , Femenino , Humanos , Imagenología Tridimensional , India/epidemiología , Imagen por Resonancia Magnética , Masculino , Memoria a Corto Plazo , Probabilidad , Programas Informáticos , Sustancia Negra/diagnóstico por imagen , Adulto Joven
7.
J Alzheimers Dis ; 66(2): 517-532, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30198874

RESUMEN

Molecular dynamics simulation and in vitro nuclear magnetic resonance (NMR) studies on glutathione (GSH) indicated existence of closed and extended conformations. The present work in a multi-center research setting reports in-depth analysis of GSH conformers in vivo using a common magnetic resonance spectroscopy (MRS) protocol and signal processing scheme. MEGA-PRESS pulse sequence was applied on healthy subjects using 3T Philips MRI scanner (India) and 3T GE MRI scanner (Norway) using the same experimental parameters (echo time, repetition time, and selective 180° refocusing ON-pulse at 4.40 ppm and 4.56 ppm). All MRS data were processed at one site National Brain Research Center (NBRC) using in-house MRS processing toolbox (KALPANA) for consistency. We have found that both the closed and extended GSH conformations are present in human brain and the relative proportion of individual conformer peak depends on the specific selection of refocusing ON-pulse position in MEGA-PRESS pulse sequence. It is important to emphasize that in vivo experiments with different refocusing and inversion pulse positions, echo time, and voxel size, clearly evidence the presence of both the GSH conformations. The GSH conformer peak positions for the closed GSH (Cys-Hß) peak at ∼2.80 ppm and extended GSH (Cys-Hß) peak at ∼2.95 ppm remain consistent irrespective of the selective refocusing OFF-pulse positions. This is the first in vivo study where both extended and closed GSH conformers are detected using the MEGA-PRESS sequence employing the parameters derived from the high resolution in vitro NMR studies on GSH.


Asunto(s)
Encéfalo/metabolismo , Glutatión/química , Glutatión/metabolismo , Ácido Aspártico/análogos & derivados , Ácido Aspártico/metabolismo , Encéfalo/diagnóstico por imagen , Femenino , Voluntarios Sanos , Humanos , Procesamiento de Imagen Asistido por Computador , Técnicas In Vitro , Imagen por Resonancia Magnética , Espectroscopía de Resonancia Magnética , Masculino , Conformación Proteica , Tritio/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...