Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Molecules ; 29(10)2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38792159

RESUMEN

As a development of our research on biocompatible glycoconjugate probes and specifically multi-chromophoric systems, herein, we report the synthesis and early bactericidal tests of two luminescent glycoconjugates whose basic structure is characterized by two boron dipyrromethene difluoride (BODIPY) moieties and three galactoside rings mounted on an oligophenylene ethynylene (OPE) skeleton. BODIPY fluorophores have found widespread application in many branches of biology in the last few decades. In particular, molecular platforms showing two different BODIPY groups have unique photophysical behavior useful in fluorescence imaging. Construction of the complex architecture of the new probes is accomplished through a convergent route that exploits a series of copper-free Heck-Cassar-Sonogashira cross-couplings. The great emergency due to the proliferation of bacterial infections, in conjunction with growing antibiotic resistance, requires the production of new multifunctional drugs and efficient methods for their targeted delivery to control bacteria-associated diseases. Preliminary studies of the glycoconjugate properties as antibacterial agents against representatives of Gram-negative (P. aeruginosa) and Gram-positive (S. aureus) pathogens, which are associated with chronic infections, indicated significant bactericidal activity ascribable to their structural features.


Asunto(s)
Antibacterianos , Compuestos de Boro , Pruebas de Sensibilidad Microbiana , Pseudomonas aeruginosa , Compuestos de Boro/química , Compuestos de Boro/farmacología , Compuestos de Boro/síntesis química , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/síntesis química , Pseudomonas aeruginosa/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos , Glicoconjugados/química , Glicoconjugados/farmacología , Glicoconjugados/síntesis química , Estructura Molecular , Colorantes Fluorescentes/química , Colorantes Fluorescentes/síntesis química
3.
Chemistry ; 29(68): e202302588, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-37671982

RESUMEN

We report the absorption spectra and photophysical properties of homo and hetero-aggregate assemblies of a strongly emissive N-annulated perylene dye (P) and of a dyad made of P and a methyl viologen derivative (P-MV), in ethanol-water solutions. In homo-aggregate assemblies of P, the π-π* fluorescence of the isolated chromophore is replaced by excimer emission at lower energy, with a lifetime of 900 ps, due to excimer formation from the initially prepared excitons. In homo-aggregate assemblies of P-MV, photoinduced charge separation, with formation of P+ -MV- species, occurs in 3 ps with a charge recombination of 20 ps. In hetero-aggregate P/P-MV systems, the light energy absorbed by the P components delocalizes over various P subunits, and when a P-MV unit is reached, charge separation occurs; however, excimer emission is present for P/P-MV ratio larger than 3 : 1, indicating that delocalized excitons within the hetero-aggregate systems extend over a limited number of P chromophores.

4.
Sci Rep ; 13(1): 11320, 2023 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-37443197

RESUMEN

Two new supramolecular photocatalysts containing Ru(II) polypyridine units as light-harvesting photosensitizers and Re(I) polypyridine subunits as catalytic centers have been prepared. The new species, RuRe2A and Ru2ReA, contain catalytic Re(I) subunits coordinated by the preformed CO2TEOA adduct (known to be the effective catalytic subunits; TEOA is triethanolamine) and exhibit quite efficient and selective photoreduction of CO2 to CO, with outstanding TONs of 2368 and 2695 and a selectivity of 99.9% and 98.9%, respectively. Such photocatalytic properties are significantly improved with respect to those of previously studied RuRe2 and Ru2Re parent compounds, containing chloride ligands instead of the CO2TEOA adduct. Comparison between photocatalytic performance of the new species and their parent compounds allows to investigate the effect of the CO2TEOA insertion process as well as the eventual effect of the presence of chloride ions in solution on the photocatalytic processes. The improved photocatalytic properties of RuRe2A and Ru2ReA compared with their parent species are attributed to a combined effect of different distribution of the one-electron reduced form of the supramolecular photocatalysts on the Ru-subunit(s) (leading to decreased CO formation due to a poisoning ligand loss process) and on the Re-subunit(s) and to the presence of chloride ions in solution for RuRe2 and Ru2Re, which could interfere with the CO2TEOA adduct formation, a needed requisite for CO forming catalysis. These results strongly indicate the utility of preparing supramolecular photocatalysts containing preformed adducts.

5.
Phys Chem Chem Phys ; 25(3): 1504-1512, 2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36448376

RESUMEN

The last few decades have seen an impressive development in molecular-based artificial photosynthesis, thanks to the design of integrated light-harvesting antennae, charge separation systems, and catalysts for water oxidation or hydrogen production based on covalently linked subunits. However, in recent years, self-assembly and spontaneous aggregation of components emerged - sometimes also through serendipity - for the preparation of multicomponent systems aimed to perform the basic processes needed for artificial photosynthesis. Here we critically discuss some key articles that have recently shown the potential of self-assembly for artificial photosynthesis, ranging from self-assembly of antennae and charge separation systems to integrated antenna/catalyst assemblies, to planned co-localization of various components into restricted environments. It is evident that self-assembly can generate emerging properties with respect to the non-aggregated species, and such emerging properties can be quite convenient for designing efficient photocatalytic systems.


Asunto(s)
Fotosíntesis , Agua , Oxidación-Reducción , Catálisis , Hidrógeno
6.
Org Biomol Chem ; 21(2): 386-396, 2023 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-36524706

RESUMEN

Herein we report the synthesis and biological properties of sugar-conjugated oligophenylene ethynylene (OPE) dyes, used as novel photosensitizers (PSs) for photodynamic treatment (PDT) under blue light. The OPE-bearing glycosides at both ends are successfully prepared by a Pd-catalyzed Sonogashira cross-coupling reaction. The live-cell imaging studies have shown that these OPE glycosides (including glucose, mannose and maltose derivatives) efficiently penetrate the cytoplasm of cultured HeLa cancer cells. No dark toxicity was observed, but upon irradiating the cells under blue light an extraordinary photodynamic effect was observed at low concentrations (10-6-10-8 M). The localization studies indicate that OPE-glucose 1 and OPE-mannose 2 have Golgi patterns, whereas OPE-maltose 3 could be in lysosomes. The PDT and morphological studies in HeLa cells treated with sublethal doses of PS 1-3 revealed that cell death occurs by necrosis.


Asunto(s)
Glicósidos , Fotoquimioterapia , Humanos , Células HeLa , Glicósidos/farmacología , Maltosa , Manosa , Fotoquimioterapia/métodos , Luz , Fármacos Fotosensibilizantes/farmacología
7.
Int J Mol Sci ; 23(17)2022 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-36076937

RESUMEN

In this paper we describe the synthesis of a novel bichromophoric system in which an efficient photoinduced intercomponent energy transfer process is active. The dyad consists of one subunit of curcumin and one of BODIPY and is able to emit in the far-red region, offering a large Stokes shift, capable of limiting light scattering processes for applications in microscopy. The system has been encapsulated in MCM-41 nanoparticles with dimensions between 50 and 80 nm. Both the molecular dyad and individual subunits were tested with different cell lines to study their effective applicability in bioimaging. MCM-41 nanoparticles showed no reduction in cell viability, indicating their biocompatibility and bio-inertness and making them capable of delivering organic molecules even in aqueous-based formulations, avoiding the toxicity of organic solvents. Encapsulation in the porous silica structure directed the location of the bichromophoric system within cytoplasm, while the dyad alone stains the nucleus of the hFOB cell line.


Asunto(s)
Curcumina , Nanopartículas , Compuestos de Boro/química , Curcumina/farmacología , Nanopartículas/química , Dióxido de Silicio
8.
Org Biomol Chem ; 20(14): 2742-2763, 2022 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-35137764

RESUMEN

Luminescent BODIPY-sugar probes have stimulated the attention of researchers for the potential applications of such molecular systems in bio-imaging. The presence of carbohydrate units confers unique structural and biological features, beside enhancement of water solubility and polarity. On the other hand, BODIPY (BOronDiPYrromethene) derivatives represent eclectic and functional luminescent molecules because of their outstanding photophysical properties. This article provides a review on the synthesis and applications of BODIPY-linked glycosyl probes in which the labelling of complex carbohydrates with BODIPY allowed the disclosing of their in vivo behaviour or where the sugar constitutes a recognition element for specific targeting probes, or, finally, in which the stereochemical characteristics of the carbohydrate hydroxyl groups play as structural elements for assembling more than one photoactive subunit, resulting in functional supramolecular molecules with modulable properties. We describe the methods we have used to construct various multiBODIPY molecular systems capable of functioning as artificial antennas exhibiting extremely efficient and fast photo-induced energy transfer. Some of these systems have been designed to allow the modulation of energy transfer efficiency and emission color, and intensity dependent on their position within a biological matrix. Finally, future perspectives for such BODIPY-based functional supramolecular sugar systems are also highlighted.


Asunto(s)
Compuestos de Boro , Carbohidratos , Compuestos de Boro/química , Transferencia de Energía , Azúcares
9.
Chemistry ; 28(5): e202103310, 2022 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-34752652

RESUMEN

The structure of a decanuclear photo- and redox-active dendrimer based on Ru(II) polypyridine subunits, suitable as a light-harvesting multicomponent species for artificial photosynthesis, has been investigated by means of computer modelling. The compound has the general formula [Ru{(µ-dpp)Ru[(µ-dpp)Ru(bpy)2 ]2 }3 ](PF6 )20 (Ru10; bpy=2,2'-bipyridine; dpp=2,3-bis(2'-pyridyl)pyrazine). The stability of possible isomers of each monomer was investigated by performing classical molecular dynamics (MD) and quantum mechanics (QM) simulations on each monomer and comparing the results. The number of stable isomers is reduced to 36 with a prevalence of MER isomerism in the central core, as previously observed by NMR experiments. The simulations on decanuclear dendrimers suggest that the stability of the dendrimer is not linked to the stability of the individual monomers composing the dendrimer but rather governed by the steric constrains originated by the multimetallic assembly. Finally, the self-aggregation of Ru10 and the distribution of the counterions around the complexes is investigated using Molecular Dynamics both in implicit and explicit acetonitrile solution. In representative examples, with nine and four dendrimers, the calculated pair distribution function for the ruthenium centers suggests a self-aggregation mechanism in which the dendrimers are approaching in small blocks and then aggregate all together. Scanning transmission electron microscopy complements the investigation, supporting the formation of different aggregates at various concentrations.


Asunto(s)
Dendrímeros , Rutenio , Simulación de Dinámica Molecular , Oxidación-Reducción , Fotosíntesis
10.
Chemistry ; 27(68): 16904-16911, 2021 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-34418201

RESUMEN

The luminophore Ru(bpy)2 (dcbpy)2+ (bpy=2,2'-bipyridine; dcbpy=4,4'-dicarboxy-2,2'-bipyridine) is covalently linked to a chitosan polymer; crosslinking by tripolyphosphate produced Ru-decorated chitosan fibers (NS-RuCh), with a 20 : 1 ratio between chitosan repeating units and RuII chromophores. The properties of the RuII compound are unperturbed by the chitosan structure, with NS-RuCh exhibiting the typical metal-to-ligand charge-transfer (MLCT) absorption and emission bands of RuII complexes. When crosslinks are made in the presence of IrO2 nanoparticles, such species are encapsulated within the nanofibers, thus generating the IrO2 ⊂NS-RuCh system, in which both RuII photosensitizers and IrO2 water oxidation catalysts are within the nanofiber structures. NS-RuCh and IrO2 ⊂NS-RuCh have been characterized by dynamic light scattering, scanning electronic microscopy, and energy-dispersive X-ray analysis, which indicated a 2 : 1 ratio between RuII chromophores and IrO2 species. Photochemical water oxidation has been investigated by using IrO2 ⊂NS-RuCh as the chromophore/catalyst assembly and persulfate anions as the sacrificial species: photochemical water oxidation yields O2 with a quantum yield (Φ) of 0.21, definitely higher than the Φ obtained with a similar solution containing separated Ru(bpy)3 2+ and IrO2 nanoparticles (0.05) or with respect to that obtained when using NS-RuCh and "free" IrO2 nanoparticles (0.10). A fast hole-scavenging process (rate constant, 7×104  s-1 ) involving the oxidized photosensitizer and the IrO2 catalyst within the IrO2 ⊂NS-RuCh system is behind the improved photochemical quantum yield of IrO2 ⊂NS-RuCh.


Asunto(s)
Quitosano , Nanopartículas , Compuestos Organometálicos , Rutenio , Iridio , Agua
11.
Dalton Trans ; 50(4): 1422-1433, 2021 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-33433535

RESUMEN

Bis-(diethyl-dithioxamidate)platinum(ii) is able to transport HCl from the donor aqueous phase to the receiving one over a mean distance of 12 cm in about 3 minutes across an organic membrane in the bulk, without stirring of the organic phase, i.e. at a rate far exceeding the unidirectional macroscopic diffusion coefficient. The way in which this surprising phenomenon can happen is linked to the behaviour of HCl which, because of dynamic interactions with [Pt(HEt2C2N2S2)2] (in which HCl is hosted as a tight ion pair [Pt(H2Et2C2N2S2)2][Cl]2) and chloroform molecules, gives rise to observable nanometric and micrometric domains, more dense than the surrounding bulk, whose formation and disaggregation processes accelerate the unidirectional macroscopic diffusion of HCl. Thermodynamic parameters obtained from the study of acid-base behaviour of the system Pt(ii) species/HCl/CHCl3 also agree with the proposed mechanism of HCl transport.


Asunto(s)
Complejos de Coordinación/química , Ácido Clorhídrico/química , Platino (Metal)/química , Difusión , Interacciones Hidrofóbicas e Hidrofílicas , Estructura Molecular , Transición de Fase , Termodinámica
12.
Dalton Trans ; 49(20): 6529-6531, 2020 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-32412560
13.
Chem Sci ; 11(6): 1556-1563, 2020 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-32206277

RESUMEN

We have designed and synthesized a new tris-chelating polypyridine ligand (bpy3Ph) suitable to be used as a bridging ligand (BL) for constructing various supramolecular photocatalysts. This BL is a phenylene ring with three ethylene chains at 1, 3, and 5 positions, of which the other terminals are connected to 2,2'-bipyridine moieties. The ligand bpy3Ph has been used to prepare, according to a multi-step synthetic protocol, trinuclear supramolecular photocatalysts containing different metal subunits. In particular, the compounds Ru2Re and RuRe2 have been prepared, containing different ratios of components based on Ru(dmb)3 2+-type and Re(dmb)(CO)3Cl-type units (dmb = 4,4'-dimethyl-2,2'-bipyridine), which can play the roles of photosensitizers and catalyst units for photocatalytic CO2 reduction, respectively. The trinuclear model Ru3 and mononuclear and dinuclear Ru and Ru2 precursor metal complexes, containing free chelating sites, have also been synthesized using the same bridging ligand. The absorption spectra, redox behaviour and photophysical properties of the new species indicate that there is no strong electronic interaction among the Ru and Re units. The trinuclear complexes Ru2Re and RuRe2 could photocatalyze CO2 reduction to CO with high selectivity (up to 97%), high efficiency (Φ COs of 28% and 25%, respectively: BIH as a reductant), and high durability (TONCOs of 5232 and 6038, respectively: BIH as a reductant) which are the largest TONs for CO2 reduction using supramolecular photocatalysts in homogeneous solutions. The absence of negligible accumulation of the mono-reduced form of the photosensitizer indicates fast electron transfer to the catalyst unit(s) through the relatively large bridging ligand and is proposed to contribute to the outstanding photocatalytic properties of the new species, including their durability. The relevant photocatalytic behaviour of the new systems indicates new avenues for the design of extended bridging ligands capable of efficiently and functionally integrating photosensitizers and catalysts towards the preparation of new, larger supramolecular photocatalysts for selective CO2 reduction.

14.
Dalton Trans ; 49(10): 3341-3352, 2020 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-32103210

RESUMEN

Two mononuclear Ru(ii) complexes, i.e. [RuCl(κ3N-terpy)(κ2N-dpp)]PF6 ([1]PF6; terpy = 2,2':6',2''-terpyridine; dpp = 2,3-bis(2'-pyridyl-pyrazine) and [RuCl(κ3N-tpm)(κ2N-dpp)]Cl ([2]Cl; tpm = tris(1-pyrazolyl)methane), and one dinuclear complex, i.e. [Ru2Cl(κ3N-tpm)(µ-κ2N:κ2N-dpp)Ru(κ2N-bpy)2][PF6]3 ([3][PF6]3; bpy = 2,2'-bipyridine), have been synthesized and their water oxidation catalytic properties have been investigated. A combined DFT and experimental (35Cl NMR and conductivity measurements) study aimed to elucidate the nature of [1]+ and [2]+ in aqueous solution has also been performed, indicating that one water molecule is allowed to enter the first coordination sphere of [2]+ in the ground state, replacing one tpm nitrogen. Conversely, in the case of [1]+, water coordination, assumed to be needed for the water oxidation process, presumably occurs following the oxidation of the metal. For all complexes, a catalytic wave has been detected in acetonitrile/water 1 : 1 (v/v) solution in the range 1.4-1.7 V vs. SCE. In all cases, water oxidation (investigated at pH < 8) takes place initially via a proton-coupled two-electron, two-proton process with the formation of an Ru(iv)[double bond, length as m-dash]O moiety, followed by one electron oxidation and water nucleophilic attack. The TON and TOF values (within the range of 16-33 and 1.3-2.2 h-1, respectively) of the complexes are higher than those of the benchmark [Ru(LLL)(LL)(OH2)]2+-type species (LLL and LL are tridentate and bidentate polypyridine ligands, respectively), which is [Ru(terpy)(bpm)(OH2)]2+.

15.
Photochem Photobiol Sci ; 19(1): 105-113, 2020 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-31930262

RESUMEN

We report on the light-switch behaviour of two head-to-tail expanded bipyridinium species as a function of their interaction with calf thymus DNA and polynucleotides. In particular, both DNA and polynucleotides containing exclusively adenine or guanine moieties quench the luminescence of the fused expanded bipyridinium species. This behaviour has been rationalized demonstrating that a reductive photoinduced electron transfer process takes place involving both adenine or guanine moieties. The charge separated state so produced recombines in the tens of picoseconds. These results could help in designing new organic substrates for application in DNA probing technology and lab on chip-based sensing systems.


Asunto(s)
Sondas de ADN/química , ADN/análisis , Colorantes Fluorescentes/química , Imagen Óptica , Compuestos de Piridinio/química , Animales , Bovinos , Sondas de ADN/síntesis química , Colorantes Fluorescentes/síntesis química , Estructura Molecular , Oxidación-Reducción , Compuestos de Piridinio/síntesis química , Espectroscopía Infrarroja Corta , Rayos Ultravioleta
16.
Inorg Chem ; 58(9): 5807-5817, 2019 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-31017774

RESUMEN

Three new linearly arranged bichromophoric systems 1-3 have been prepared, and their photophysical properties have been studied, taking also advantage of femtosecond pump-probe transient absorption spectroscopy. The three compounds contain the same chromophores, that is a Ru(II)-terpy-like species and a fused expanded bipyridinium (FEBP) unit, separated by three different, variously methylated biphenylene-type bridges. The chromophores have been selected to be selectively addressable, and excitation involving the Ru-based or the FEBP-based dyes results in different excited-state decays. Upon Ru-based excitation at 570 nm, oxidative photoinduced electron transfer (OPET) takes place in 1-3 from the 3MLCT state; however, the charge-separated species does not accumulate, indicating that the charge recombination rate constant exceeds the OPET rate constant. Upon excitation of the organic dye at 400 nm, the FEBP-based 1π-π* level is prepared, which undergoes a series of intercomponent decay events, including (i) electron-exchange energy transfer leading to the MLCT manifold (SS-EnT), which successively decays according to 570 nm excitation, and (ii) reductive photoinduced electron transfer (RPET), leading to the preparation of the charge-separated (CS) state. Reductive PET, involving the FEBP-based singlet state, is much faster than oxidative PET, involving the MLCT triplet state, essentially because of driving force reasons. The rate constant of CR is intermediate between the rate constants of OPET and RPET, and this makes 1-3 capable to selectively read the 400 nm excitation as an active input to prepare the CS state, whereas excitation at wavelengths longer than 480 nm is inefficient to accumulate the CS state. Moreover, intriguing differences between the rate constants of the various processes in 1-3 have been analyzed and interpreted according to the superexchange theory for electron transfer. This allowed us to uncover the role of the electron-transfer and hole-transfer superexchange pathways in promoting the various intercomponent photoinduced decay processes occurring in 1-3.

17.
Chemistry ; 24(64): 16972-16976, 2018 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-30198621

RESUMEN

Two new tetralkylammonium-OPEs, bearing one or two positively charged groups directly linked to the aromatic residues and two ß-d-glucopyranose terminations, were synthesized. Their peculiar structural features, joining the biologically relevant sugar moieties, flat aromatic cores and positive charges, make these luminescent dyes soluble in aqueous media and able to strongly interact with DNA. As a result of UV/Vis spectral variations, DNA melting temperature measures, viscometric titrations and induced CD, we propose a partial insertion of the OPEs aromatic core into the helix, stabilized by glucose H-bonding with the groups accessible from the grooves. This interaction leads to the quenching of the OPE luminescence due to guanine reduction. The biocompatibility of the monocationic OPE with healthy and cancer cells, and the reduction of proliferation in HEp-2 cancer cells induced by the dicationic one, make this class of compounds promising for future biological applications.


Asunto(s)
Antineoplásicos/química , Carbohidratos/química , Diseño de Fármacos , Polímeros/química , Animales , Antineoplásicos/metabolismo , Antineoplásicos/farmacología , Línea Celular Tumoral , Proliferación Celular , Chlorocebus aethiops , Dicroismo Circular , ADN/química , ADN/metabolismo , Humanos , Cinética , Espectrofotometría , Temperatura de Transición , Células Vero
18.
Dalton Trans ; 47(13): 4733-4738, 2018 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-29537424

RESUMEN

We prepared a bichromophoric species 1, made of two different bodipy dyes bridged by a d-galactose unit. 1 exhibits different emission spectra when located in different compartments of biological systems, independently of its concentration. This is an unprecedented feature for a single multicomponent molecule and is due to the dependence on the environment of the photoinduced energy transfer process occurring between its bodipy subunits. Therefore, 1 can give useful information about cell composition and ultimately anomalies without requiring the simultaneous use of several different compounds, paving the way for the use of environment-controlled inter-component energy transfer to gain cell information based on luminescence imaging.

19.
Chemistry ; 23(65): 16497-16504, 2017 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-28922481

RESUMEN

Self-assembly is a powerful synthetic tool that has led to the development of one-, two- and three-dimensional architectures. From MOFs to molecular flasks, self-assembled materials have proven to be of great interest to the scientific community. Here we describe a strategy for the construction and de-construction of a supramolecular structure through unprecedented photo-induced assembly and dis-assembly. The combination of two approaches, a [n×1]-directional bonding strategy and a ligand photo-dissociation strategy, allows the photo-induced assembly of a polypyridyl RuII precursor into a discrete molecular square. Diffusion-ordered NMR spectroscopy confirmed the synthesis of a higher volume species, while the identity of the species was established by high-resolution mass spectrometry and single-crystal X-ray diffraction studies. The self-assembled square is not obtained by classical thermal techniques in similar conditions, but is obtained only by light-irradiation. The tetraruthenium square has an excited-state lifetime (135 ns), 40 times that of its mononuclear precursor and its luminescence quantum yield (1.0 %) is three orders of magnitude higher. These remarkable luminescence properties are closely related to the relatively rigid square structure of the tetraruthenium assembly, as suggested by slow radiationless decay and transient absorption spectroscopy. The results described herein are a rare example of photo-induced assembly and dis-assembly processes, and can open the way to a new avenue in supramolecular chemistry, leading to the preparation of structurally organized supermolecules by photochemical techniques.

20.
Org Biomol Chem ; 15(15): 3192-3195, 2017 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-28362444

RESUMEN

The remarkable affinity of deca-carboxylatopillar[5]arene WP5 towards the aminoglycoside antibiotic, amikacin, in aqueous media is reported; in vitro studies on Gram-positive bacteria (Staphylococcus aureus) show that drug entrapment inside WP5 also takes place in the presence of the microrganisms, thus pointing to WP5 as an appealing carrier for amikacin targeted delivery.


Asunto(s)
Amicacina/química , Antibacterianos/química , Portadores de Fármacos/química , Compuestos de Amonio Cuaternario/química , Agua/química , Amicacina/farmacología , Antibacterianos/farmacología , Calixarenos , Solubilidad , Staphylococcus aureus/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...