Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 131(18): 186704, 2023 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-37977632

RESUMEN

EuCd_{2}As_{2} is now widely accepted as a topological semimetal in which a Weyl phase is induced by an external magnetic field. We challenge this view through firm experimental evidence using a combination of electronic transport, optical spectroscopy, and excited-state photoemission spectroscopy. We show that the EuCd_{2}As_{2} is in fact a semiconductor with a gap of 0.77 eV. We show that the externally applied magnetic field has a profound impact on the electronic band structure of this system. This is manifested by a huge decrease of the observed band gap, as large as 125 meV at 2 T, and, consequently, by a giant redshift of the interband absorption edge. However, the semiconductor nature of the material remains preserved. EuCd_{2}As_{2} is therefore a magnetic semiconductor rather than a Dirac or Weyl semimetal, as suggested by ab initio computations carried out within the local spin-density approximation.

2.
Phys Rev Lett ; 128(2): 026406, 2022 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-35089762

RESUMEN

We present a complementary experimental and theoretical investigation of relaxation dynamics in the charge-density-wave (CDW) system TbTe_{3} after ultrafast optical excitation. Using time- and angle-resolved photoemission spectroscopy, we observe an unusual transient modulation of the relaxation rates of excited photocarriers. A detailed analysis of the electron self-energy based on a nonequilibrium Green's function formalism reveals that the phase space of electron-electron scattering is critically modulated by the photoinduced collective CDW excitation, providing an intuitive microscopic understanding of the observed dynamics and revealing the impact of the electronic band structure on the self-energy.

3.
Phys Chem Chem Phys ; 23(44): 25308-25316, 2021 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-34747432

RESUMEN

The photochemistry of metal-organic compounds in solution is determined by both intra- and inter-molecular relaxation processes after photoexcitation. Understanding its prime mechanisms is crucial to optimise the reactive paths and control their outcome. Here we investigate the photoinduced dynamics of aqueous ferrioxalate ([FeIII(C2O4)3]3-) upon 263 nm excitation using ultrafast liquid phase photoelectron spectroscopy (PES). The initial step is found to be a ligand-to-metal electron transfer, occuring on a time scale faster than our time resolution (≲30 fs). Furthermore, we observe that about 25% of the initially formed ferrous species population are lost in ∼2 ps. Cast in the contest of previous ultrafast infrared and X-ray spectroscopic studies, we suggest that upon prompt photoreduction of the metal centre, the excited molecules dissociate in <140 fs into the pair of CO2 and [(CO2)FeII(C2O4)2]3- fragments, with unity quantum yield. About 25% of these pairs geminately recombine in ∼2 ps, due to interaction with the solvent molecules, reforming the ground state of the parent ferric molecule.

4.
Nat Commun ; 12(1): 2499, 2021 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-33941788

RESUMEN

The interaction of many-body systems with intense light pulses may lead to novel emergent phenomena far from equilibrium. Recent discoveries, such as the optical enhancement of the critical temperature in certain superconductors and the photo-stabilization of hidden phases, have turned this field into an important research frontier. Here, we demonstrate nonthermal charge-density-wave (CDW) order at electronic temperatures far greater than the thermodynamic transition temperature. Using time- and angle-resolved photoemission spectroscopy and time-resolved X-ray diffraction, we investigate the electronic and structural order parameters of an ultrafast photoinduced CDW-to-metal transition. Tracking the dynamical CDW recovery as a function of electronic temperature reveals a behaviour markedly different from equilibrium, which we attribute to the suppression of lattice fluctuations in the transient nonthermal phonon distribution. A complete description of the system's coherent and incoherent order-parameter dynamics is given by a time-dependent Ginzburg-Landau framework, providing access to the transient potential energy surfaces.

5.
Phys Rev Lett ; 125(21): 216402, 2020 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-33274982

RESUMEN

Trigonal tellurium, a small-gap semiconductor with pronounced magneto-electric and magneto-optical responses, is among the simplest realizations of a chiral crystal. We have studied by spin- and angle-resolved photoelectron spectroscopy its unconventional electronic structure and unique spin texture. We identify Kramers-Weyl, composite, and accordionlike Weyl fermions, so far only predicted by theory, and show that the spin polarization is parallel to the wave vector along the lines in k space connecting high-symmetry points. Our results clarify the symmetries that enforce such spin texture in a chiral crystal, thus bringing new insight in the formation of a spin vectorial field more complex than the previously proposed hedgehog configuration. Our findings thus pave the way to a classification scheme for these exotic spin textures and their search in chiral crystals.

6.
Phys Rev Lett ; 125(7): 076401, 2020 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-32857568

RESUMEN

In nodal-line semimetals, linearly dispersing states form Dirac loops in the reciprocal space with a high degree of electron-hole symmetry and a reduced density of states near the Fermi level. The result is reduced electronic screening and enhanced correlations between Dirac quasiparticles. Here we investigate the electronic structure of ZrSiSe, by combining time- and angle-resolved photoelectron spectroscopy with ab initio density functional theory (DFT) complemented by an extended Hubbard model (DFT+U+V) and by time-dependent DFT+U+V. We show that electronic correlations are reduced on an ultrashort timescale by optical excitation of high-energy electrons-hole pairs, which transiently screen the Coulomb interaction. Our findings demonstrate an all-optical method for engineering the band structure of a quantum material.

7.
Phys Rev Lett ; 124(20): 206402, 2020 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-32501104

RESUMEN

Lead-halide perovskite (LHP) semiconductors are emergent optoelectronic materials with outstanding transport properties which are not yet fully understood. We find signatures of large polaron formation in the electronic structure of the inorganic LHP CsPbBr_{3} by means of angle-resolved photoelectron spectroscopy. The experimental valence band dispersion shows a hole effective mass of 0.26±0.02 m_{e}, 50% heavier than the bare mass m_{0}=0.17 m_{e} predicted by density functional theory. Calculations of the electron-phonon coupling indicate that phonon dressing of the carriers mainly occurs via distortions of the Pb-Br bond with a Fröhlich coupling parameter α=1.81. A good agreement with our experimental data is obtained within the Feynman polaron model, validating a viable theoretical method to predict the carrier effective mass of LHPs ab initio.

8.
Rev Sci Instrum ; 90(2): 023104, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30831759

RESUMEN

Time- and angle-resolved photoemission spectroscopy (trARPES) employing a 500 kHz extreme-ultraviolet light source operating at 21.7 eV probe photon energy is reported. Based on a high-power ytterbium laser, optical parametric chirped pulse amplification, and ultraviolet-driven high-harmonic generation, the light source produces an isolated high-harmonic with 110 meV bandwidth and a flux of more than 1011 photons/s on the sample. Combined with a state-of-the-art ARPES chamber, this table-top experiment allows high-repetition rate pump-probe experiments of electron dynamics in occupied and normally unoccupied (excited) states in the entire Brillouin zone and with a temporal system response function below 40 fs.

9.
Science ; 362(6416): 821-825, 2018 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-30442808

RESUMEN

Ultrafast nonequilibrium dynamics offer a route to study the microscopic interactions that govern macroscopic behavior. In particular, photoinduced phase transitions (PIPTs) in solids provide a test case for how forces, and the resulting atomic motion along a reaction coordinate, originate from a nonequilibrium population of excited electronic states. Using femtosecond photoemission, we obtain access to the transient electronic structure during an ultrafast PIPT in a model system: indium nanowires on a silicon(111) surface. We uncover a detailed reaction pathway, allowing a direct comparison with the dynamics predicted by ab initio simulations. This further reveals the crucial role played by localized photoholes in shaping the potential energy landscape and enables a combined momentum- and real-space description of PIPTs, including the ultrafast formation of chemical bonds.

10.
Phys Rev Lett ; 118(20): 206401, 2017 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-28581791

RESUMEN

High-resolution angle-resolved photoemission spectroscopy data reveal evidence of a crossover from one-dimensional (1D) to three-dimensional (3D) behavior in the prototypical charge density wave (CDW) material NbSe_{3}. In the low-temperature 3D regime, gaps in the electronic structure are observed due to two incommensurate CDWs, in agreement with x-ray diffraction and electronic-structure calculations. At higher temperatures we observe a spectral weight depletion that approaches the power-law behavior expected in one dimension. From the warping of the quasi-1D Fermi surface at low temperatures, we extract the energy scale of the dimensional crossover. This is corroborated by a detailed analysis of the density of states, which reveals a change in dimensional behavior dependent on binding energy. Our results offer an important insight into the dimensionality of excitations in quasi-1D materials.

11.
Phys Rev Lett ; 117(27): 277201, 2016 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-28084758

RESUMEN

We report the spin-selective optical excitation of carriers in inversion-symmetric bulk samples of the transition metal dichalcogenide (TMDC) WSe_{2}. Employing time- and angle-resolved photoelectron spectroscopy (trARPES) and complementary time-dependent density functional theory (TDDFT), we observe spin-, valley-, and layer-polarized excited state populations upon excitation with circularly polarized pump pulses, followed by ultrafast (<100 fs) scattering of carriers towards the global minimum of the conduction band. TDDFT reveals the character of the conduction band, into which electrons are initially excited, to be two-dimensional and localized within individual layers, whereas at the minimum of the conduction band, states have a three-dimensional character, facilitating interlayer charge transfer. These results establish the optical control of coupled spin-, valley-, and layer-polarized states in centrosymmetric materials with locally broken symmetries and suggest the suitability of TMDC multilayer and heterostructure materials for valleytronic and spintronic device concepts.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...