Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38341461

RESUMEN

BACKGROUND: Dickkopf-related protein 1 (DKK1) is a Wingless-related integrate site (Wnt) signaling modulator that is upregulated in prostate cancers (PCa) with low androgen receptor expression. DKN-01, an IgG4 that neutralizes DKK1, delays PCa growth in pre-clinical DKK1-expressing models. These data provided the rationale for a clinical trial testing DKN-01 in patients with metastatic castration-resistant PCa (mCRPC). METHODS: This was an investigator-initiated parallel-arm phase 1/2 clinical trial testing DKN-01 alone (monotherapy) or in combination with docetaxel 75 mg/m2 (combination) for men with mCRPC who progressed on ≥1 AR signaling inhibitors. DKK1 status was determined by RNA in-situ expression. The primary endpoint of the phase 1 dose escalation cohorts was the determination of the recommended phase 2 dose (RP2D). The primary endpoint of the phase 2 expansion cohorts was objective response rate by iRECIST criteria in patients treated with the combination. RESULTS: 18 pts were enrolled into the study-10 patients in the monotherapy cohorts and 8 patients in the combination cohorts. No DLTs were observed and DKN-01 600 mg was determined as the RP2D. A best overall response of stable disease occurred in two out of seven (29%) evaluable patients in the monotherapy cohort. In the combination cohort, five out of seven (71%) evaluable patients had a partial response (PR). A median rPFS of 5.7 months was observed in the combination cohort. In the combination cohort, the median tumoral DKK1 expression H-score was 0.75 and the rPFS observed was similar between patients with DKK1 H-score ≥1 versus H-score = 0. CONCLUSION: DKN-01 600 mg was well tolerated. DKK1 blockade has modest anti-tumor activity as a monotherapy for mCRPC. Anti-tumor activity was observed in the combination cohorts, but the response duration was limited. DKK1 expression in the majority of mCRPC is low and did not clearly correlate with anti-tumor activity of DKN-01 plus docetaxel.

2.
Am J Physiol Renal Physiol ; 326(2): F257-F264, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-38031731

RESUMEN

Renal artery stenosis (RAS) is a major cause of ischemic kidney disease, which is largely mediated by inflammation. Mapping the immune cell composition in ischemic kidneys might provide useful insight into the disease pathogenesis and uncover therapeutic targets. We used mass cytometry (CyTOF) to explore the single-cell composition in a unique data set of human kidneys nephrectomized due to chronic occlusive vascular disease (RAS, n = 3), relatively healthy donor kidneys (n = 6), and unaffected sections of kidneys with renal cell carcinoma (RCC, n = 3). Renal fibrosis and certain macrophage populations were also evaluated in renal sections. Cytobank analysis showed in RAS kidneys decreased cell populations expressing epithelial markers (CD45-/CD13+) and increased CD45+ inflammatory cells, whereas scattered tubular-progenitor-like cells (CD45-/CD133+/CD24+) increased compared with kidney donors. Macrophages switched to proinflammatory phenotypes in RAS, and the numbers of IL-10-producing dendritic cells (DC) were also lower. Compared with kidney donors, RAS kidneys had decreased overall DC populations but increased plasmacytoid DC. Furthermore, senescent active T cells (CD45+/CD28+/CD57+), aged neutrophils (CD45+/CD15+/CD24+/CD11c+), and regulatory B cells (CD45+/CD14-/CD24+/CD44+) were increased in RAS. RCC kidneys showed a distribution of cell phenotypes comparable with RAS but less pronounced, accompanied by an increase in CD34+, CD370+, CD103+, and CD11c+/CD103+ cells. Histologically, RAS kidneys showed significantly increased fibrosis and decreased CD163+/CD141+ cells. The single-cell platform CyTOF enables the detection of significant changes in renal cells, especially in subsets of immune cells in ischemic human kidneys. Endogenous pro-repair cell types in RAS warrant future study for potential immune therapy.NEW & NOTEWORTHY The single-cell platform mass cytometry (CyTOF) enables detection of significant changes in one million of renal cells, especially in subsets of immune cells in ischemic human kidneys distal to renal artery stenosis (RAS). We found that pro-repair cell types such as scattered tubular-progenitor-like cells, aged neutrophils, and regulatory B cells show a compensatory increase in RAS. Immune cell phenotype changes may reflect ongoing inflammation and impaired immune defense capability in the kidneys.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Obstrucción de la Arteria Renal , Humanos , Anciano , Carcinoma de Células Renales/patología , Obstrucción de la Arteria Renal/patología , Arteria Renal , Riñón/patología , Isquemia/patología , Fenotipo , Inflamación/patología , Neoplasias Renales/patología
3.
Clin Cancer Res ; 29(20): 4242-4255, 2023 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-37505479

RESUMEN

PURPOSE: We previously showed that elevated frequencies of peripheral blood CD3+CD4+CD127-GARP-CD38+CD39+ T cells were associated with checkpoint immunotherapy resistance in patients with metastatic melanoma. In the present study, we sought to further investigate this population of ectoenzyme-expressing T cells (Teee). EXPERIMENTAL DESIGN: Teee derived from the peripheral blood of patients with metastatic melanoma were evaluated by bulk RNA-sequencing (RNA-seq) and flow cytometry. The presence of Teee in the tumor microenvironment was assessed using publically available single-cell RNA-seq datasets of melanoma, lung, and bladder cancers along with multispectral immunofluorescent imaging of melanoma patient formalin-fixed, paraffin-embedded specimens. Suppressive function of Teee was determined by an in vitro autologous suppression assay. RESULTS: Teee had phenotypes associated with proliferation, apoptosis, exhaustion, and high expression of inhibitory molecules. Cells with a Teee gene signature were present in tumors of patients with melanoma, lung, and bladder cancers. CD4+ T cells co-expressing CD38 and CD39 in the tumor microenvironment were preferentially associated with Ki67- CD8+ T cells. Co-culture of patient Teee with autologous T cells resulted in decreased proliferation of target T cells. High baseline intratumoral frequencies of Teee were associated with checkpoint immunotherapy resistance and poor overall survival in patients with metastatic melanoma. CONCLUSIONS: These results demonstrate that a novel population of CD4+ T cells co-expressing CD38 and CD39 is found both in the peripheral blood and tumor of patients with melanoma and is associated with checkpoint immunotherapy resistance.


Asunto(s)
Melanoma , Neoplasias de la Vejiga Urinaria , Humanos , Linfocitos T CD4-Positivos/patología , Linfocitos T CD8-positivos/metabolismo , Técnicas de Cocultivo , Linfocitos Infiltrantes de Tumor/metabolismo , Melanoma/tratamiento farmacológico , Melanoma/genética , Melanoma/metabolismo , Microambiente Tumoral/genética , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Neoplasias de la Vejiga Urinaria/genética , Neoplasias de la Vejiga Urinaria/metabolismo
4.
Nephrol Dial Transplant ; 37(10): 1844-1856, 2022 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-35451482

RESUMEN

BACKGROUND: Renal artery stenosis (RAS) is an important cause of chronic kidney disease and secondary hypertension. In animal models, renal ischemia leads to downregulation of growth factor expression and loss of intrarenal microcirculation. However, little is known about the sequelae of large-vessel occlusive disease on the microcirculation within human kidneys. METHOD: This study included five patients who underwent nephrectomy due to renovascular occlusion and seven nonstenotic discarded donor kidneys (four deceased donors). Micro-computed tomography was performed to assess microvascular spatial densities and tortuosity, an index of microvascular immaturity. Renal protein expression, gene expression and histology were studied in vitro using immunoblotting, polymerase chain reaction and staining. RESULTS: RAS demonstrated a loss of medium-sized vessels (0.2-0.3 mm) compared with donor kidneys (P = 0.037) and increased microvascular tortuosity. RAS kidneys had greater protein expression of angiopoietin-1, hypoxia-inducible factor-1α and thrombospondin-1 but lower protein expression of vascular endothelial growth factor (VEGF) than donor kidneys. Renal fibrosis, loss of peritubular capillaries (PTCs) and pericyte detachment were greater in RAS, yet they had more newly formed PTCs than donor kidneys. Therefore, our study quantified significant microvascular remodeling in the poststenotic human kidney. RAS induced renal microvascular loss, vascular remodeling and fibrosis. Despite downregulated VEGF, stenotic kidneys upregulated compensatory angiogenic pathways related to angiopoietin-1. CONCLUSIONS: These observations underscore the nature of human RAS as a microvascular disease distal to main vessel stenosis and support therapeutic strategies directly targeting the poststenotic kidney microcirculation in patients with RAS.


Asunto(s)
Obstrucción de la Arteria Renal , Angiopoyetina 1/metabolismo , Angiopoyetina 1/uso terapéutico , Animales , Fibrosis , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Riñón/patología , Obstrucción de la Arteria Renal/complicaciones , Circulación Renal/fisiología , Trombospondinas/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Microtomografía por Rayos X
5.
J Tissue Eng Regen Med ; 16(6): 550-558, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35319825

RESUMEN

Chronic ischemia triggers senescence in renal tubules and at least partly mediates kidney dysfunction and damage through a p16Ink4a -related mechanism. We previously showed that mesenchymal stromal/stem cells (MSCs) delivered systemically do not effectively decrease cellular senescence in stenotic murine kidneys. We hypothesized that selective MSC targeting to injured kidneys using an anti-KIM1 antibody (KIM-MSC) coating would enhance their ability to abrogate cellular senescence in murine renal artery stenosis (RAS). KIM-MSC were injected into transgenic INK-ATTAC mice, which are amenable for selective eradication of p16Ink4a+ cells, 4 weeks after induction of unilateral RAS. To determine whether KIM-MSC abolish p16Ink4a -dependent cellular senescence, selective clearance of p16Ink4a+ cells was induced in a subgroup of RAS mice using AP20187 over 3 weeks prior to KIM-MSC injection. Two weeks after KIM-MSC aortic injection, renal senescence, function, and tissue damage were assessed. KIM-MSC delivery decreased gene expression of senescence and senescence-associated secretory phenotype factors, and improved micro-MRI-derived stenotic-kidney glomerular filtration rate and perfusion. Renal fibrosis and tubular injury also improved after KIM-MSC treatment. Yet, their efficacy was slightly augmented by prior elimination of p16Ink4a+ senescent cells. Therefore, selective targeting of MSC to the injured kidney markedly improves their senolytic potency in murine RAS, despite incomplete eradication of p16+ cells. KIM-MSC may constitute a useful therapeutic strategy in chronic renal ischemic injury.


Asunto(s)
Células Madre Mesenquimatosas , Obstrucción de la Arteria Renal , Animales , Senescencia Celular , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Isquemia/metabolismo , Riñón/metabolismo , Células Madre Mesenquimatosas/metabolismo , Ratones , Ratones Transgénicos , Obstrucción de la Arteria Renal/metabolismo
6.
J Immunol Methods ; 505: 113233, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35131237

RESUMEN

Biopsies of inflammatory tissue contain a complex network of interacting cells, orchestrating the immune or autoimmune response. While standard histological examination can identify relationships, it is clear that a great amount of data on each slide is not quantitated or categorized in standard microscopic examinations. To deal with the huge amount of data present in biopsy tissue in an unbiased and comprehensive way, we have developed a deep learning algorithm to identify immune cells in biopsies of inflammatory lesions. We focused on T follicular helper (Tfh) cell subsets and B cells in dermatomyositis biopsy images. We achieved strong performance on detection and classification of cells, including the rare Tfh cell subsets present in the tissue. This algorithm could be used to perform distance mapping between cell types in tissue, and could be easily adapted to other disease states.


Asunto(s)
Inteligencia Artificial , Aprendizaje Profundo , Linfocitos B , Biopsia , Humanos , Microscopía
7.
J Am Soc Nephrol ; 32(8): 1987-2004, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34135081

RESUMEN

BACKGROUND: Peripheral vascular diseases may induce chronic ischemia and cellular injury distal to the arterial obstruction. Cellular senescence involves proliferation arrest in response to stress, which can damage neighboring cells. Renal artery stenosis (RAS) induces stenotic-kidney dysfunction and injury, but whether these arise from cellular senescenceand their temporal pattern remain unknown. METHODS: Chronic renal ischemia was induced in transgenic INK-ATTAC and wild type C57BL/6 mice by unilateral RAS, and kidney function (in vivo micro-MRI) and tissue damage were assessed. Mouse healthy and stenotic kidneys were analyzed using unbiased single-cell RNA-sequencing. To demonstrate translational relevance, cellular senescence was studied in human stenotic kidneys. RESULTS: Using intraperitoneal AP20187 injections starting 1, 2, or 4 weeks after RAS, selective clearance of cells highly expressing p16Ink4a attenuated cellular senescence and improved stenotic-kidney function; however, starting treatment immediately after RAS induction was unsuccessful. Broader clearance of senescent cells, using the oral senolytic combination dasatinib and quercetin, in C57BL/6 RAS mice was more effective in clearing cells positive for p21 (Cdkn1a) and alleviating renal dysfunction and damage. Unbiased, single-cell RNA sequencing in freshly dissociated cells from healthy and stenotic mouse kidneys identified stenotic-kidney epithelial cells undergoing both mesenchymal transition and senescence. As in mice, injured human stenotic kidneys exhibited cellular senescence, suggesting this process is conserved. CONCLUSIONS: Maladaptive tubular cell senescence, involving upregulated p16 (Cdkn2a), p19 (Cdkn2d), and p21 (Cdkn1a) expression, is associated with renal dysfunction and injury in chronic ischemia. These findings support development of senolytic strategies to delay chronic ischemic renal injury.


Asunto(s)
Senescencia Celular/fisiología , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Isquemia/fisiopatología , Riñón/fisiopatología , Insuficiencia Renal Crónica/fisiopatología , Quinasas p21 Activadas/metabolismo , Animales , Apoptosis/efectos de los fármacos , Caspasa 8/metabolismo , Senescencia Celular/efectos de los fármacos , Senescencia Celular/genética , Enfermedad Crónica , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Inhibidor p19 de las Quinasas Dependientes de la Ciclina/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Dasatinib/farmacología , Modelos Animales de Enfermedad , Activación Enzimática/efectos de los fármacos , Células Epiteliales/fisiología , Transición Epitelial-Mesenquimal , Expresión Génica , Factor de Crecimiento Similar a EGF de Unión a Heparina/genética , Humanos , Isquemia/etiología , Riñón/irrigación sanguínea , Riñón/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Osteopontina/genética , Inhibidores de Proteínas Quinasas/farmacología , Obstrucción de la Arteria Renal/complicaciones , Insuficiencia Renal Crónica/etiología , Insuficiencia Renal Crónica/patología , Análisis de Secuencia de ARN , Análisis de la Célula Individual , Tacrolimus/análogos & derivados , Tacrolimus/farmacología , Regulación hacia Arriba , Quinasas p21 Activadas/genética
8.
J Cell Physiol ; 236(2): 1332-1344, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32657444

RESUMEN

Cell stress may give rise to insuperable growth arrest, which is defined as cellular senescence. Stenotic kidney (STK) ischemia and injury induced by renal artery stenosis (RAS) may be associated with cellular senescence. Mesenchymal stem cells (MSCs) decrease some forms of STK injury, but their ability to reverse senescence in RAS remains unknown. We hypothesized that RAS evokes STK senescence, which would be ameliorated by MSCs. Mice were studied after 4 weeks of RAS, RAS treated with adipose tissue-derived MSCs 2 weeks earlier, or sham. STK senescence-associated ß-galactosidase (SA-ß-Gal) activity was measured. Protein and gene expression was used to assess senescence and the senescence-associated secretory phenotype (SASP), and staining for renal fibrosis, inflammation, and capillary density. In addition, senescence was assessed as p16+ and p21+ urinary exosomes in patients with renovascular hypertension (RVH) without or 3 months after autologous adipose tissue-derived MSC delivery, and in healthy volunteers (HV). In RAS mice, STK SA-ß-Gal activity increased, and senescence and SASP marker expression was markedly elevated. MSCs improved renal function, fibrosis, inflammation, and capillary density, and attenuated SA-ß-Gal activity, but most senescence and SASP levels remained unchanged. Congruently, in human RVH, p21+ urinary exosomes were elevated compared to HV, and only slightly improved by MSC, whereas p16+ exosomes remained unchanged. Therefore, RAS triggers renal senescence in both mice and human subjects. MSCs decrease renal injury, but only partly mitigate renal senescence. These observations support exploration of targeted senolytic therapy in RAS.


Asunto(s)
Senescencia Celular/genética , Trasplante de Células Madre Mesenquimatosas , Obstrucción de la Arteria Renal/terapia , beta-Galactosidasa/genética , Tejido Adiposo/citología , Animales , Modelos Animales de Enfermedad , Exosomas/genética , Humanos , Inflamación/genética , Inflamación/patología , Inflamación/terapia , Riñón/metabolismo , Riñón/patología , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Ratones , Obstrucción de la Arteria Renal/genética , Obstrucción de la Arteria Renal/patología
9.
Nat Metab ; 2(11): 1284-1304, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33199925

RESUMEN

Decreased NAD+ levels have been shown to contribute to metabolic dysfunction during aging. NAD+ decline can be partially prevented by knockout of the enzyme CD38. However, it is not known how CD38 is regulated during aging, and how its ecto-enzymatic activity impacts NAD+ homeostasis. Here we show that an increase in CD38 in white adipose tissue (WAT) and the liver during aging is mediated by accumulation of CD38+ immune cells. Inflammation increases CD38 and decreases NAD+. In addition, senescent cells and their secreted signals promote accumulation of CD38+ cells in WAT, and ablation of senescent cells or their secretory phenotype decreases CD38, partially reversing NAD+ decline. Finally, blocking the ecto-enzymatic activity of CD38 can increase NAD+ through a nicotinamide mononucleotide (NMN)-dependent process. Our findings demonstrate that senescence-induced inflammation promotes accumulation of CD38 in immune cells that, through its ecto-enzymatic activity, decreases levels of NMN and NAD+.


Asunto(s)
ADP-Ribosil Ciclasa 1/metabolismo , Envejecimiento/metabolismo , Glicoproteínas de Membrana/metabolismo , NAD/biosíntesis , ADP-Ribosil Ciclasa 1/genética , ADP-Ribosil Ciclasa 1/inmunología , Adipocitos Blancos/metabolismo , Tejido Adiposo Blanco/metabolismo , Envejecimiento/inmunología , Animales , Trasplante de Médula Ósea , Senescencia Celular , Células HEK293 , Humanos , Inflamación/inmunología , Hígado/crecimiento & desarrollo , Hígado/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Mononucleótido de Nicotinamida/metabolismo , Fenotipo
10.
J Am Heart Assoc ; 8(11): e012584, 2019 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-31433703

RESUMEN

Background Hypertension may be associated with renal cellular injury. Cells in distress release extracellular vesicles (EVs), and their numbers in urine may reflect renal injury. Cellular senescence, an irreversible growth arrest in response to a noxious milieu, is characterized by release of proinflammatory cytokines. We hypothesized that EVs released by senescent nephron cells can be identified in urine of patients with hypertension. Methods and Results We recruited patients with essential hypertension (EH) or renovascular hypertension and healthy volunteers (n=14 each). Renal oxygenation was assessed using magnetic resonance imaging and blood samples collected from both renal veins for cytokine-level measurements. EVs isolated from urine samples were characterized by imaging flow cytometry based on specific markers, including p16 (senescence marker), calyxin (podocytes), urate transporter 1 (proximal tubules), uromodulin (ascending limb of Henle's loop), and prominin-2 (distal tubules). Overall percentage of urinary p16+ EVs was elevated in EH and renovascular hypertension patients compared with healthy volunteers and correlated inversely with renal function and directly with renal vein cytokine levels. Urinary levels of p16+/urate transporter 1+ were elevated in all hypertensive subjects compared with healthy volunteers, whereas p16+/prominin-2+ levels were elevated only in EH versus healthy volunteers and p16+/uromodulin+ in renovascular hypertension versus EH. Conclusions Levels of p16+ EVs are elevated in urine of hypertensive patients and may reflect increased proximal tubular cellular senescence. In EH, EVs originate also from distal tubules and in renovascular hypertension from Henle's loop. Hence, urinary EVs levels may be useful to identify intrarenal sites of cellular senescence.


Asunto(s)
Senescencia Celular , Hipertensión Esencial/patología , Vesículas Extracelulares/patología , Hipertensión Renovascular/patología , Nefronas/patología , Anciano , Biomarcadores/sangre , Biomarcadores/orina , Estudios de Casos y Controles , Inhibidor p16 de la Quinasa Dependiente de Ciclina/orina , Citocinas/sangre , Hipertensión Esencial/sangre , Hipertensión Esencial/orina , Vesículas Extracelulares/metabolismo , Femenino , Humanos , Hipertensión Renovascular/sangre , Hipertensión Renovascular/orina , Masculino , Glicoproteínas de Membrana/orina , Persona de Mediana Edad , Nefronas/metabolismo , Transportadores de Anión Orgánico/orina , Proteínas de Transporte de Catión Orgánico/orina , Estudios Prospectivos , Orina/citología
11.
Cell Transplant ; 28(9-10): 1271-1278, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31250656

RESUMEN

Mesenchymal stromal/stem cells (MSCs) belong to the endogenous cellular reparative system, and can be used exogenously in cell-based therapy. MSCs release extracellular vesicles (EVs), including exosomes and microvesicles, which mediate some of their therapeutic activity through intercellular communication. We have previously demonstrated that metabolic syndrome (MetS) modifies the cargo packed within swine EV, but whether it influences their phenotypical characteristics remains unclear. This study tested the hypothesis that MetS shifts the size distribution of MSC-derived EVs. Adipose tissue-derived MSC-EV subpopulations from Lean (n = 6) and MetS (n = 6) pigs were characterized for number and size using nanoparticle-tracking analysis, flow cytometry, and transmission electron microscopy. Expression of exosomal genes was determined using next-generation RNA-sequencing (RNA-seq). The number of EV released from Lean and MetS pig MSCs was similar, yet MetS-MSCs yielded a higher proportion of small-size EVs (202.4 ± 17.7 nm vs. 280.3 ± 15.1 nm), consistent with exosomes. RNA-seq showed that their EVs were enriched with exosomal markers. Lysosomal activity remained unaltered in MetS-MSCs. Therefore, MetS alters the size distribution of MSC-derived EVs in favor of exosome release. These observations may reflect MSC injury and membrane recycling in MetS or increased expulsion of waste products, and may have important implications for development of adequate cell-based treatments.


Asunto(s)
Vesículas Extracelulares/metabolismo , Regulación de la Expresión Génica , Células Madre Mesenquimatosas/metabolismo , Síndrome Metabólico/metabolismo , RNA-Seq , Animales , Vesículas Extracelulares/patología , Células Madre Mesenquimatosas/patología , Síndrome Metabólico/patología , Tamaño de la Partícula , Porcinos
12.
Sci Rep ; 9(1): 7286, 2019 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-31086203

RESUMEN

The cellular origins of vasa vasorum are ill-defined and may involve circulating or local progenitor cells. We previously discovered that murine aortic adventitia contains Sca-1+CD45+ progenitors that produce macrophages. Here we investigated whether they are also vasculogenic. In aortas of C57BL/6 mice, Sca-1+CD45+ cells were localised to adventitia and lacked surface expression of endothelial markers (<1% for CD31, CD144, TIE-2). In contrast, they did show expression of CD31, CD144, TIE-2 and VEGFR2 in atherosclerotic ApoE-/- aortas. Although Sca-1+CD45+ cells from C57BL/6 aorta did not express CD31, they formed CD31+ colonies in endothelial differentiation media and produced interconnecting vascular-like cords in Matrigel that contained both endothelial cells and a small population of macrophages, which were located at branch points. Transfer of aortic Sca-1+CD45+ cells generated endothelial cells and neovessels de novo in a hindlimb model of ischaemia and resulted in a 50% increase in perfusion compared to cell-free control. Similarly, their injection into the carotid adventitia of ApoE-/- mice produced donor-derived adventitial and peri-adventitial microvessels after atherogenic diet, suggestive of newly formed vasa vasorum. These findings show that beyond its content of macrophage progenitors, adventitial Sca-1+CD45+ cells are also vasculogenic and may be a source of vasa vasorum during atherogenesis.


Asunto(s)
Aterosclerosis/patología , Diferenciación Celular , Neovascularización Patológica/patología , Células Madre/fisiología , Vasa Vasorum/patología , Adventicia/citología , Adventicia/patología , Animales , Antígenos Ly/metabolismo , Aorta/citología , Aorta/patología , Aterosclerosis/etiología , Dieta Aterogénica , Modelos Animales de Enfermedad , Células Endoteliales/fisiología , Femenino , Humanos , Antígenos Comunes de Leucocito/metabolismo , Macrófagos/fisiología , Masculino , Proteínas de la Membrana/metabolismo , Ratones , Ratones Noqueados para ApoE , Neovascularización Patológica/etiología , Vasa Vasorum/citología
13.
Bio Protoc ; 9(21): e3420, 2019 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-33654918

RESUMEN

The ability to non-invasively detect specific damage to the kidney has been limited. Identification of extracellular vesicles released by cells, especially when under duress, might allow for monitoring and identification of specific cell types within the kidney that are stressed. We have adapted a previously published traditional flow cytometry method for use with an imaging flow cytometer (Amnis FlowSight) for identifying EV released by specific cell types and excreted into the urine or blood using markers characteristic of particular cells in the kidney. Here we present a protocol utilizing the Amnis FlowSight Imaging Flow Cytometer to identify and quantify EV from the urine of patients with essential hypertension and renovascular disease. Notably, EV isolated from cell culture media and plasma can also be analyzed similarly.

14.
Hypertension ; 72(5): 1180-1188, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30354805

RESUMEN

Hypertension, an important cause of chronic kidney disease, is characterized by peritubular capillary (PTC) loss. Circulating levels of endothelial microparticles (EMPs) reflect systemic endothelial injury. We hypothesized that systemic and urinary PTC-EMPs levels would reflect renal microvascular injury in hypertensive patients. We prospectively measured by flow cytometry renal vein, inferior vena cava, and urinary levels of EMPs in essential (n=14) and renovascular (RVH; n=24) hypertensive patients and compared them with peripheral blood and urinary levels in healthy volunteers (n=14). PTC-EMPs were identified as urinary exosomes positive for the PTC marker plasmalemmal-vesicle-associated protein. In 7 RVH patients, PTC and fibrosis were also quantified in renal biopsy, and in 18 RVH patients, PTC-EMPs were measured again 3 months after continued medical therapy with or without stenting (n=9 each). Renal vein and systemic PTC-EMPs levels were not different among the groups, whereas their urinary levels were elevated in both RVH and essential hypertension versus healthy volunteers (56.8%±12.7% and 62.8%±10.7% versus 34.0%±17.8%; both P≤0.001). Urinary PTC-EMPs levels correlated directly with blood pressure and inversely with estimated glomerular filtration rate. Furthermore, in RVH, urinary PTC-EMPs levels correlated directly with stenotic kidney hypoxia, histological PTC count, and fibrosis and inversely with cortical perfusion. Three months after treatment, the change in urinary PTC-EMPs levels correlated inversely with a change in renal function ( r=-0.582; P=0.011). Therefore, urinary PTC-EMPs levels are increased in hypertensive patients and may reflect renal microcirculation injury, whereas systemic PTC-EMPs levels are unchanged. Urinary PTC-EMPs may be useful as novel biomarkers of intrarenal capillary loss.


Asunto(s)
Capilares/patología , Micropartículas Derivadas de Células , Hipertensión/patología , Riñón/patología , Anciano , Femenino , Tasa de Filtración Glomerular , Humanos , Hipertensión/orina , Riñón/irrigación sanguínea , Masculino , Persona de Mediana Edad
15.
Sci Rep ; 8(1): 13948, 2018 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-30224726

RESUMEN

Renal artery stenosis (RAS) caused by narrowing of arteries is characterized by microvascular damage. Macrophages are implicated in repair and injury, but the specific populations responsible for these divergent roles have not been identified. Here, we characterized murine kidney F4/80+CD64+ macrophages in three transcriptionally unique populations. Using fate-mapping and parabiosis studies, we demonstrate that CD11b/cint are long-lived kidney-resident (KRM) while CD11chiMϕ, CD11cloMϕ are monocyte-derived macrophages. In a murine model of RAS, KRM self-renewed, while CD11chiMϕ and CD11cloMϕ increased significantly, which was associated with loss of peritubular capillaries. Replacing the native KRM with monocyte-derived KRM using liposomal clodronate and bone marrow transplantation followed by RAS, amplified loss of peritubular capillaries. To further elucidate the nature of interactions between KRM and peritubular endothelial cells, we performed RNA-sequencing on flow-sorted macrophages from Sham and RAS kidneys. KRM showed a prominent activation pattern in RAS with significant enrichment in reparative pathways, like angiogenesis and wound healing. In culture, KRM increased proliferation of renal peritubular endothelial cells implying direct pro-angiogenic properties. Human homologs of KRM identified as CD11bintCD11cintCD68+ increased in post-stenotic kidney biopsies from RAS patients compared to healthy human kidneys, and inversely correlated to kidney function. Thus, KRM may play protective roles in stenotic kidney injury through expansion and upregulation of pro-angiogenic pathways.


Asunto(s)
Riñón/patología , Monocitos/patología , Animales , Antígenos CD/metabolismo , Antígenos de Diferenciación Mielomonocítica/metabolismo , Antígeno CD11c/metabolismo , Ácido Clodrónico/metabolismo , Inflamación/metabolismo , Inflamación/patología , Riñón/metabolismo , Macrófagos/metabolismo , Macrófagos/patología , Ratones , Ratones Endogámicos C57BL , Monocitos/metabolismo , Fosfolípidos/metabolismo
16.
Stem Cells Transl Med ; 7(5): 394-403, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29446551

RESUMEN

Mesenchymal stem cells (MSC) have been experimentally used for kidney repair, but modest retention limits their efficacy. Cell-surface coating allows modulating MSC homing and interaction with target cells. We coated mouse adipose tissue-derived MSC with antibodies directed against kidney injury molecule-1 (ab-KIM1), which is upregulated in injured kidneys, and tested the hypothesis that this would enhance their therapeutic effects in ischemic kidney injury. Untreated MSC, ab-KIM1-coated MSC (KIM-MSC), or vehicle, were injected systemically into the carotid artery of 2-kidneys, 1-clip mice 2 weeks after surgery. MSC retention in different organs was explored 24 hours, 48 hours, or 2 weeks after injection. Renal volume, perfusion, and oxygenation were studied 2 weeks after injection using magnetic resonance imaging in vivo, and renal inflammation, apoptosis, capillary density, and fibrosis ex vivo. The ab-KIM1 coating had little effect on MSC viability or proliferation. The stenotic kidney showed upregulated KIM1 expression, selective homing, and greater retention of KIM-MSC compared to untreated MSC and compared to other organs. KIM-MSC-injected mice improved renal perfusion and capillary density, and attenuated oxidative damage, apoptosis, and fibrosis compared to mice treated with vehicle or with native MSC. In conclusion, MSC coating with ab-KIM1 increased their retention in the ischemic kidney and enhanced their therapeutic efficacy. This novel method may be useful to selectively target injured kidneys, and supports further development of strategies to enhance cell-based treatment of ischemic kidney injury. Stem Cells Translational Medicine 2018;7:394-403.


Asunto(s)
Receptor Celular 1 del Virus de la Hepatitis A/metabolismo , Enfermedades Renales/metabolismo , Riñón/metabolismo , Células Madre Mesenquimatosas/metabolismo , Daño por Reperfusión/metabolismo , Tejido Adiposo/metabolismo , Animales , Apoptosis/fisiología , Fibrosis/metabolismo , Masculino , Ratones , Estrés Oxidativo/fisiología
17.
Sci Rep ; 8(1): 1263, 2018 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-29352176

RESUMEN

To test the hypothesis that intrinsic renal scattered tubular cells (STC-like cells) contribute to repairing injured tubular epithelial cells (TEC) by releasing extracellular vesicle (EV). EV released from primary cultured pig STC-like cells were confirmed by electron microscopy. Antimycin-A (AMA)-induced injured proximal TEC (PK1 cells) were co-cultured with STC-like cells, STC-like cells-derived EV, or EV-free conditioned-medium for 3 days. Cellular injury, oxidative stress and mitochondrial function were assessed. Transfer of mitochondria from STC-like cells to TEC was assessed using Mito-trackers, and their viability by mitochondrial membrane potential assays. STC-like cells-derived EV were intra-arterially injected into mice 2 weeks after induction of unilateral renal artery stenosis. Two weeks later, renal hemodynamics were studied using magnetic-resonance-imaging, and renal fibrosis assessed ex-vivo. Cultured STC-like cells released EV that were uptaken by TEC. A protective effect conferred by STC-like cells in AMA-induced TEC injury was partly mimicked by their EV. Furthermore, STC-like cells-EV carried and transferred mitochondrial material to injured TEC, which partly restored mitochondrial function. In vivo, STC-like cells-derived EV engrafted in the stenotic kidney, and improved its perfusion and oxygenation. STC-like cells-EV exert protective effects on injured tubular cells in vitro and in vivo, partly by transferring STC-like cells mitochondria, which remain at least partly functional in recipient TEC.


Asunto(s)
Vesículas Extracelulares/trasplante , Túbulos Renales/citología , Obstrucción de la Arteria Renal/terapia , Animales , Células Cultivadas , Técnicas de Cocultivo , Dactinomicina/toxicidad , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Vesículas Extracelulares/metabolismo , Masculino , Potencial de la Membrana Mitocondrial , Ratones , Estrés Oxidativo , Porcinos
18.
J Ayurveda Integr Med ; 9(1): 45-52, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29249636

RESUMEN

BACKGROUND: Arjunarishta (AA), a formulation used as cardiotonic is a hydroalcoholic formulation of Terminalia arjuna (Roxb.) Wight and Arn. (TA) belonging to family Combretaceae. OBJECTIVE: To evaluate the anti-hyperglycemic and anti-hyperlipidemic effect of Arjunarishta on high-fat diet fed animals. MATERIALS AND METHODS: High-fat diet fed (HFD) Wistar rats were randomly divided into three groups and treated with phytochemically standardized Arjunarishta (1.8 ml/kg), and hydroalcoholic extract of T. arjuna (TAHA) (250 mg/kg) and rosuvastatin (10 mg/kg), for 3 months. Intraperitoneal glucose tolerance test, blood biochemistry, liver triglyceride and systolic blood pressure were performed in all the groups. Effect of these drugs on the expression of tumor necrosis factor-α (TNF-α) and insulin receptor substrate-1 (IRS-1) and peroxisome proliferators activated receptor γ coactivator 1-α (PGC-1α) were studied in liver tissue using Quantitative Real-time PCR. RESULTS: HFD increased fasting blood glucose, liver triglyceride, systolic blood pressure and gene expression of TNF-α, IRS-1 and PGC-1α. Treatment of AA and TAHA significantly reduced fasting blood glucose, systolic blood pressure, total cholesterol and triglyceride levels. These treatments significantly decreased gene expression of TNF-α (2.4, 2.2 and 2.6 fold change); increased IRS-1 (2.8, 2.9 and 2.8 fold change) and PGC-1α (2.9, 3.7 and 3.3 fold change) as compared to untreated HFD. CONCLUSION: Anti-hyperglycemic, anti-hyperlipidemic effect of Arjunarishta may be mediated by decreased TNF-α and increased PGC-1α and IRS-1.

19.
Kidney Int ; 92(1): 114-124, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28242034

RESUMEN

Mesenchymal stem/stromal cells (MSCs) have distinct capability for renal repair, but may have safety concerns. MSC-derived extracellular vesicles emerged as a novel noncellular alternative. Using a porcine model of metabolic syndrome and renal artery stenosis we tested whether extracellular vesicles attenuate renal inflammation, and if this capacity is mediated by their cargo of the anti-inflammatory cytokine interleukin (IL) 10. Pigs with metabolic syndrome were studied after 16 weeks of renal artery stenosis untreated or treated four weeks earlier with a single intrarenal delivery of extracellular vesicles harvested from adipose tissue-derived autologous MSCs. Lean and sham metabolic syndrome animals served as controls (seven each). Five additional pigs with metabolic syndrome and renal artery stenosis received extracellular vesicles with pre-silenced IL10 (IL10 knock-down). Single-kidney renal blood flow, glomerular filtration rate, and oxygenation were studied in vivo and renal injury pathways ex vivo. Retention of extracellular vesicles in the stenotic kidney peaked two days after delivery and decreased thereafter. Four weeks after injection, extracellular vesicle fragments colocalized with stenotic-kidney tubular cells and macrophages, indicating internalization or fusion. Extracellular vesicle delivery attenuated renal inflammation, and improved medullary oxygenation and fibrosis. Renal blood flow and glomerular filtration rate fell in metabolic syndrome and renal artery stenosis compared to metabolic syndrome, but was restored in pigs treated with extracellular vesicles. These renoprotective effects were blunted in pigs treated with IL10-depleted extracellular vesicles. Thus, extracellular vesicle-based regenerative strategies might be useful for patients with metabolic syndrome and renal artery stenosis.


Asunto(s)
Vesículas Extracelulares/trasplante , Riñón , Trasplante de Células Madre Mesenquimatosas/métodos , Síndrome Metabólico/cirugía , Nefritis/prevención & control , Obstrucción de la Arteria Renal/cirugía , Animales , Hipoxia de la Célula , Células Cultivadas , Modelos Animales de Enfermedad , Vesículas Extracelulares/metabolismo , Femenino , Fibrosis , Tasa de Filtración Glomerular , Interleucina-10/genética , Interleucina-10/metabolismo , Riñón/metabolismo , Riñón/patología , Riñón/fisiopatología , Síndrome Metabólico/complicaciones , Síndrome Metabólico/genética , Síndrome Metabólico/metabolismo , Nefritis/etiología , Nefritis/genética , Nefritis/metabolismo , Oxígeno/sangre , Interferencia de ARN , Obstrucción de la Arteria Renal/complicaciones , Obstrucción de la Arteria Renal/genética , Obstrucción de la Arteria Renal/metabolismo , Circulación Renal , Sus scrofa , Factores de Tiempo , Trasplante Autólogo
20.
PLoS One ; 12(3): e0174303, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28333993

RESUMEN

BACKGROUND: Mesenchymal stromal/stem cell (MSC) transplantation is a promising therapy for tissue regeneration. Extracellular vesicles (EVs) released by MSCs act as their paracrine effectors by delivering proteins and genetic material to recipient cells. To assess how their cargo mediates biological processes that drive their therapeutic effects, we integrated miRNA, mRNA, and protein expression data of EVs from porcine adipose tissue-derived MSCs. METHODS: Simultaneous expression profiles of miRNAs, mRNAs, and proteins were obtained by high-throughput sequencing and LC-MS/MS proteomic analysis in porcine MSCs and their daughter EVs (n = 3 each). TargetScan and ComiR were used to predict miRNA target genes. Functional annotation analysis was performed using DAVID 6.7 database to rank primary gene ontology categories for the enriched mRNAs, miRNA target genes, and proteins. STRING was used to predict associations between mRNA and miRNA target genes. RESULTS: Differential expression analysis revealed 4 miRNAs, 255 mRNAs, and 277 proteins enriched in EVs versus MSCs (fold change >2, p<0.05). EV-enriched miRNAs target transcription factors (TFs) and EV-enriched mRNAs encode TFs, but TF proteins are not enriched in EVs. Rather, EVs are enriched for proteins that support extracellular matrix remodeling, blood coagulation, inflammation, and angiogenesis. CONCLUSIONS: Porcine MSC-derived EVs contain a genetic cargo of miRNAs and mRNAs that collectively control TF activity in EVs and recipient cells, as well as proteins capable of modulating cellular pathways linked to tissue repair. These properties provide the fundamental basis for considering therapeutic use of EVs in tissue regeneration.


Asunto(s)
Tejido Adiposo/química , Vesículas Extracelulares/química , Células Madre Mesenquimatosas/química , Tejido Adiposo/metabolismo , Animales , Vesículas Extracelulares/metabolismo , Perfilación de la Expresión Génica , Células Madre Mesenquimatosas/metabolismo , MicroARNs/análisis , Proteínas/análisis , Proteómica , ARN Mensajero/análisis , Porcinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...