Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Molecules ; 28(20)2023 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-37894658

RESUMEN

Nandrolone (Estr-4-en-17ß-ol-3-one) is a derivative of testosterone and a naturally occurring anabolic-androgenic agent which belongs to the steroid group. Crystal structures of four short, medium and long esterified forms of nandrolone, including propionate, phenylpropionate, cypionate and undecanoate were determined using single-crystal X-ray diffraction. Crystal packing, supramolecular features and intermolecular interactions were described based on a quantitative and qualitative Hirshfeld surfaces analysis accompanied by evaluation of crystal energies and intermolecular interactions computation. Also, the solubility of the esters was investigated from a pharmaceutical perspective.

2.
Gels ; 9(4)2023 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-37102911

RESUMEN

This study presents a structural analysis of a whey and gelatin-based hydrogel reinforced with graphene oxide (GO) by ultraviolet and visible (UV-VIS) spectroscopy, Fourier transform infrared spectroscopy (FT-IR), and X-ray diffraction (XRD). The results revealed barrier properties in the UV range for the reference sample (containing no graphene oxide) and the samples with minimal GO content of 0.66×10-3% and 3.33×10-3%, respectively, in the UV-VIS and near-IR range; for the samples with higher GO content, this was 6.67×10-3% and 33.33×10-3% as an effect of the introduction of GO into the hydrogel composite. The changes in the position of diffraction angles 2θ from the X-ray diffraction patterns of GO-reinforced hydrogels indicated a decrease in the distances between the turns of the protein helix structure due to the GO cross-linking effect. Transmission electron spectroscopy (TEM) was used for GO, whilst scanning electron microscopy (SEM) was used for the composite characterization. A novel technique for investigating the swelling rate was presented by performing electrical conductivity measurements, the results of which led to the identification of a potential hydrogel with sensor properties.

3.
Materials (Basel) ; 15(7)2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35407945

RESUMEN

By-products from the meat and dairy industries are important sources of high biological value proteins. This paper explores possibilities for improving the swelling and integrity of a cross-linked whey and gelatin hydrogel with different amounts of CuSO4 × 5H2O. Overall, swelling tests demonstrate that cross-linked samples show a better hydration capacity and stability in the hydration medium, but different copper concentrations lead to different swelling behavior. At concentrations smaller than 0.39%, the sample lasts for 75 h in a water environment before beginning to disintegrate. At a concentration of copper sulphate higher than 0.55%, the stability of the sample increased substantially. The swelling kinetics has been investigated. The diffusion constant values increased with the increase in copper concentration, but, at the highest concentration of copper (0.86%), its value has decreased. Spectroscopy analyses such as Fourier transform infrared (FT-IR), X-ray diffraction (XRD), ultraviolet-visible spectroscopy (UV-VIS), and nuclear magnetic resonance (NMR) relaxometry analyses revealed changes in the secondary and tertiary structure of proteins as a result of the interaction of Cu2+ ions with functional groups of protein chains. In addition to its cross-linking ability, CuSO4 × 5H2O has also shown excellent antibacterial properties over common bacterial strains responsible for food spoilage. The result of this research demonstrates the potential of this hydrogel system as a unique material for food packaging.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...