Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
1.
Br J Anaesth ; 132(3): 607-615, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38184474

RESUMEN

BACKGROUND: Preoperative knowledge of surgical risks can improve perioperative care and patient outcomes. However, assessments requiring clinician examination of patients or manual chart review can be too burdensome for routine use. METHODS: We conducted a multicentre retrospective study of 243 479 adult noncardiac surgical patients at four hospitals within the Mass General Brigham (MGB) system in the USA. We developed a machine learning method using routinely collected coding and patient characteristics data from the electronic health record which predicts 30-day mortality, 30-day readmission, discharge to long-term care, and hospital length of stay. RESULTS: Our method, the Flexible Surgical Set Embedding (FLEX) score, achieved state-of-the-art performance to identify comorbidities that significantly contribute to the risk of each adverse outcome. The contributions of comorbidities are weighted based on patient-specific context, yielding personalised risk predictions. Understanding the significant drivers of risk of adverse outcomes for each patient can inform clinicians of potential targets for intervention. CONCLUSIONS: FLEX utilises information from a wider range of medical diagnostic and procedural codes than previously possible and can adapt to different coding practices to accurately predict adverse postoperative outcomes.


Asunto(s)
Current Procedural Terminology , Clasificación Internacional de Enfermedades , Adulto , Humanos , Estudios Retrospectivos , Readmisión del Paciente , Atención Perioperativa
2.
bioRxiv ; 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-37546851

RESUMEN

Modern neurophysiological recordings are performed using multichannel sensor arrays that are able to record activity in an increasingly high number of channels numbering in the 100's to 1000's. Often, underlying lower-dimensional patterns of activity are responsible for the observed dynamics, but these representations are difficult to reliably identify using existing methods that attempt to summarize multivariate relationships in a post-hoc manner from univariate analyses, or using current blind source separation methods. While such methods can reveal appealing patterns of activity, determining the number of components to include, assessing their statistical significance, and interpreting them requires extensive manual intervention and subjective judgement in practice. These difficulties with component selection and interpretation occur in large part because these methods lack a generative model for the underlying spatio-temporal dynamics. Here we describe a novel component analysis method anchored by a generative model where each source is described by a bio-physically inspired state space representation. The parameters governing this representation readily capture the oscillatory temporal dynamics of the components, so we refer to it as Oscillation Component Analysis (OCA). These parameters - the oscillatory properties, the component mixing weights at the sensors, and the number of oscillations - all are inferred in a data-driven fashion within a Bayesian framework employing an instance of the expectation maximization algorithm. We analyze high-dimensional electroencephalography and magnetoencephalography recordings from human studies to illustrate the potential utility of this method for neuroscience data.

3.
bioRxiv ; 2024 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-37546863

RESUMEN

The development of neural circuits has long-lasting effects on brain function, yet our understanding of early circuit development in humans remains limited. Here, periodic EEG power features and aperiodic components were examined from longitudinal EEGs collected from 592 healthy 2-44 month-old infants, revealing age-dependent nonlinear changes suggestive of distinct milestones in early brain maturation. Consistent with the transient developmental progression of thalamocortical circuitry, we observe the presence and then absence of periodic alpha and high beta peaks across the three-year period, as well as the emergence of a low beta peak (12-20Hz) after six months of age. We present preliminary evidence that the emergence of the low beta peak is associated with higher thalamocortical-dependent, anesthesia-induced alpha coherence. Together, these findings suggest that early age-dependent changes in alpha and beta periodic peaks may reflect the state of thalamocortical network development.

4.
J Neurosurg Anesthesiol ; 36(2): 125-133, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-37965706

RESUMEN

BACKGROUND: Pharmacological tolerance is defined as a decrease in the effect of a drug over time, or the need to increase the dose to achieve the same effect. It has not been established whether repeated exposure to sevoflurane induces tolerance in children. METHODS: We conducted an observational study in children younger than 6 years of age scheduled for multiple radiotherapy sessions with sevoflurane anesthesia. To evaluate the development of sevoflurane tolerance, we analyzed changes in electroencephalographic spectral power at induction, across sessions. We fitted individual and group-level linear regression models to evaluate the correlation between the outcomes and sessions. In addition, a linear mixed-effect model was used to evaluate the association between radiotherapy sessions and outcomes. RESULTS: Eighteen children were included and the median number of radiotherapy sessions per child was 28 (interquartile range: 10 to 33). There was no correlation between induction time and radiotherapy sessions. At the group level, the linear mixed-effect model showed, in a subgroup of patients, that alpha relative power and spectral edge frequency 95 were inversely correlated with the number of anesthesia sessions. Nonetheless, this subgroup did not differ from the other subjects in terms of age, sex, or the total number of radiotherapy sessions. CONCLUSIONS: Our results suggest that children undergoing repeated anesthesia exposure for radiotherapy do not develop tolerance to sevoflurane. However, we found that a group of patients exhibited a reduction in the alpha relative power as a function of anesthetic exposure. These results may have implications that justify further studies.


Asunto(s)
Anestesia , Anestésicos por Inhalación , Éteres Metílicos , Niño , Humanos , Sevoflurano , Anestésicos por Inhalación/farmacología , Éteres Metílicos/efectos adversos , Electroencefalografía
5.
NPJ Digit Med ; 6(1): 209, 2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-37973817

RESUMEN

Preoperative knowledge of expected postoperative pain can help guide perioperative pain management and focus interventions on patients with the greatest risk of acute pain. However, current methods for predicting postoperative pain require patient and clinician input or laborious manual chart review and often do not achieve sufficient performance. We use routinely collected electronic health record data from a multicenter dataset of 234,274 adult non-cardiac surgical patients to develop a machine learning method which predicts maximum pain scores on the day of surgery and four subsequent days and validate this method in a prospective cohort. Our method, POPS, is fully automated and relies only on data available prior to surgery, allowing application in all patients scheduled for or considering surgery. Here we report that POPS achieves state-of-the-art performance and outperforms clinician predictions on all postoperative days when predicting maximum pain on the 0-10 NRS in prospective validation, though with degraded calibration. POPS is interpretable, identifying comorbidities that significantly contribute to postoperative pain based on patient-specific context, which can assist clinicians in mitigating cases of acute pain.

7.
Res Sq ; 2023 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-37790544

RESUMEN

The development of neural circuits over the first years of life has long-lasting effects on brain function, yet our understanding of early circuit development in humans remains limited. Here, aperiodic and periodic EEG power features were examined from longitudinal EEGs collected from 592 healthy 2-44 month-old infants, revealing age-dependent nonlinear changes suggestive of distinct milestones in early brain maturation. Consistent with the transient developmental progression of thalamocortical circuitry, we observe the presence and then absence of periodic alpha and high beta peaks across the three-year period, as well as the emergence of a low beta peak (12-20Hz) after six months of age. We present preliminary evidence that the emergence of the low beta peak is associated with thalamocortical connectivity sufficient for anesthesia-induced alpha coherence. Together, these findings suggest that early age-dependent changes in alpha and beta periodic peaks may reflect the state of thalamocortical network development.

8.
Neuron ; 111(21): 3479-3495.e6, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37659409

RESUMEN

What happens in the human brain when we are unconscious? Despite substantial work, we are still unsure which brain regions are involved and how they are impacted when consciousness is disrupted. Using intracranial recordings and direct electrical stimulation, we mapped global, network, and regional involvement during wake vs. arousable unconsciousness (sleep) vs. non-arousable unconsciousness (propofol-induced general anesthesia). Information integration and complex processing we`re reduced, while variability increased in any type of unconscious state. These changes were more pronounced during anesthesia than sleep and involved different cortical engagement. During sleep, changes were mostly uniformly distributed across the brain, whereas during anesthesia, the prefrontal cortex was the most disrupted, suggesting that the lack of arousability during anesthesia results not from just altered overall physiology but from a disconnection between the prefrontal and other brain areas. These findings provide direct evidence for different neural dynamics during loss of consciousness compared with loss of arousability.


Asunto(s)
Estado de Conciencia , Propofol , Humanos , Estado de Conciencia/fisiología , Inconsciencia/inducido químicamente , Propofol/farmacología , Encéfalo/fisiología , Anestesia General , Electroencefalografía
9.
Br J Anaesth ; 131(3): 439-442, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37611972

RESUMEN

Electroencephalogram signatures associated with anaesthetic-induced loss of consciousness have been widely described in adult populations. A recent study helps verify our understanding of brain dynamics induced by anaesthetics in a paediatric population by describing a specific pattern in terms of an interaction of the phase of delta oscillations and the amplitude of alpha oscillations. This feature has potential translational implications for optimising future monitoring technologies.


Asunto(s)
Anestesiología , Anestésicos , Niño , Humanos , Anestesia General/efectos adversos , Encéfalo/diagnóstico por imagen , Estado de Conciencia , Electroencefalografía
10.
PLoS Comput Biol ; 19(8): e1011395, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37639391

RESUMEN

Linear parametric state-space models are a ubiquitous tool for analyzing neural time series data, providing a way to characterize the underlying brain dynamics with much greater statistical efficiency than non-parametric data analysis approaches. However, neural time series data are frequently time-varying, exhibiting rapid changes in dynamics, with transient activity that is often the key feature of interest in the data. Stationary methods can be adapted to time-varying scenarios by employing fixed-duration windows under an assumption of quasi-stationarity. But time-varying dynamics can be explicitly modeled by switching state-space models, i.e., by using a pool of state-space models with different dynamics selected by a probabilistic switching process. Unfortunately, exact solutions for state inference and parameter learning with switching state-space models are intractable. Here we revisit a switching state-space model inference approach first proposed by Ghahramani and Hinton. We provide explicit derivations for solving the inference problem iteratively after applying a variational approximation on the joint posterior of the hidden states and the switching process. We introduce a novel initialization procedure using an efficient leave-one-out strategy to compare among candidate models, which significantly improves performance compared to the existing method that relies on deterministic annealing. We then utilize this state inference solution within a generalized expectation-maximization algorithm to estimate model parameters of the switching process and the linear state-space models with dynamics potentially shared among candidate models. We perform extensive simulations under different settings to benchmark performance against existing switching inference methods and further validate the robustness of our switching inference solution outside the generative switching model class. Finally, we demonstrate the utility of our method for sleep spindle detection in real recordings, showing how switching state-space models can be used to detect and extract transient spindles from human sleep electroencephalograms in an unsupervised manner.


Asunto(s)
Algoritmos , Aprendizaje , Humanos , Benchmarking , Encéfalo , Análisis de Datos
11.
J Neurophysiol ; 130(1): 86-103, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37314079

RESUMEN

Propofol-mediated unconsciousness elicits strong alpha/low-beta and slow oscillations in the electroencephalogram (EEG) of patients. As anesthetic dose increases, the EEG signal changes in ways that give clues to the level of unconsciousness; the network mechanisms of these changes are only partially understood. Here, we construct a biophysical thalamocortical network involving brain stem influences that reproduces transitions in dynamics seen in the EEG involving the evolution of the power and frequency of alpha/low-beta and slow rhythm, as well as their interactions. Our model suggests that propofol engages thalamic spindle and cortical sleep mechanisms to elicit persistent alpha/low-beta and slow rhythms, respectively. The thalamocortical network fluctuates between two mutually exclusive states on the timescale of seconds. One state is characterized by continuous alpha/low-beta-frequency spiking in thalamus (C-state), whereas in the other, thalamic alpha spiking is interrupted by periods of co-occurring thalamic and cortical silence (I-state). In the I-state, alpha colocalizes to the peak of the slow oscillation; in the C-state, there is a variable relationship between an alpha/beta rhythm and the slow oscillation. The C-state predominates near loss of consciousness; with increasing dose, the proportion of time spent in the I-state increases, recapitulating EEG phenomenology. Cortical synchrony drives the switch to the I-state by changing the nature of the thalamocortical feedback. Brain stem influence on the strength of thalamocortical feedback mediates the amount of cortical synchrony. Our model implicates loss of low-beta, cortical synchrony, and coordinated thalamocortical silent periods as contributing to the unconscious state.NEW & NOTEWORTHY GABAergic anesthetics induce alpha/low-beta and slow oscillations in the EEG, which interact in dose-dependent ways. We constructed a thalamocortical model to investigate how these interdependent oscillations change with propofol dose. We find two dynamic states of thalamocortical coordination, which change on the timescale of seconds and dose-dependently mirror known changes in EEG. Thalamocortical feedback determines the oscillatory coupling and power seen in each state, and this is primarily driven by cortical synchrony and brain stem neuromodulation.


Asunto(s)
Propofol , Humanos , Propofol/efectos adversos , Sincronización Cortical , Corteza Cerebral , Electroencefalografía , Inconsciencia/inducido químicamente , Tálamo
12.
JAMA Surg ; 158(8): 854-864, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37314800

RESUMEN

Importance: Opioids administered to treat postsurgical pain are a major contributor to the opioid crisis, leading to chronic use in a considerable proportion of patients. Initiatives promoting opioid-free or opioid-sparing modalities of perioperative pain management have led to reduced opioid administration in the operating room, but this reduction could have unforeseen detrimental effects in terms of postoperative pain outcomes, as the relationship between intraoperative opioid usage and later opioid requirements is not well understood. Objective: To characterize the association between intraoperative opioid usage and postoperative pain and opioid requirements. Design, Setting, and Participants: This retrospective cohort study evaluated electronic health record data from a quaternary care academic medical center (Massachusetts General Hospital) for adult patients who underwent noncardiac surgery with general anesthesia from April 2016 to March 2020. Patients who underwent cesarean surgery, received regional anesthesia, received opioids other than fentanyl or hydromorphone, were admitted to the intensive care unit, or who died intraoperatively were excluded. Statistical models were fitted on the propensity weighted data set to characterize the effect of intraoperative opioid exposures on primary and secondary outcomes. Data were analyzed from December 2021 to October 2022. Exposures: Intraoperative fentanyl and intraoperative hydromorphone average effect site concentration estimated using pharmacokinetic/pharmacodynamic models. Main Outcomes and Measures: The primary study outcomes were the maximal pain score during the postanesthesia care unit (PACU) stay and the cumulative opioid dose, quantified in morphine milligram equivalents (MME), administered during the PACU stay. Medium- and long-term outcomes associated with pain and opioid dependence were also evaluated. Results: The study cohort included a total of 61 249 individuals undergoing surgery (mean [SD] age, 55.44 [17.08] years; 32 778 [53.5%] female). Increased intraoperative fentanyl and intraoperative hydromorphone were both associated with reduced maximum pain scores in the PACU. Both exposures were also associated with a reduced probability and reduced total dosage of opioid administration in the PACU. In particular, increased fentanyl administration was associated with lower frequency of uncontrolled pain; a decrease in new chronic pain diagnoses reported at 3 months; fewer opioid prescriptions at 30, 90, and 180 days; and decreased new persistent opioid use, without significant increases in adverse effects. Conclusions and Relevance: Contrary to prevailing trends, reduced opioid administration during surgery may have the unintended outcome of increasing postoperative pain and opioid consumption. Conversely, improvements in long-term outcomes might be achieved by optimizing opioid administration during surgery.


Asunto(s)
Analgésicos Opioides , Trastornos Relacionados con Opioides , Adulto , Humanos , Femenino , Persona de Mediana Edad , Masculino , Hidromorfona/uso terapéutico , Estudios Retrospectivos , Dolor Postoperatorio/tratamiento farmacológico , Fentanilo/uso terapéutico
13.
Anesth Analg ; 137(6): 1241-1249, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36881544

RESUMEN

BACKGROUND: Infants under spinal anesthesia appear to be sedated despite the absence of systemic sedative medications. In this prospective observational study, we investigated the electroencephalogram (EEG) of infants under spinal anesthesia and hypothesized that we would observe EEG features similar to those seen during sleep. METHODS: We computed the EEG power spectra and spectrograms of 34 infants undergoing infraumbilical surgeries under spinal anesthesia (median age 11.5 weeks postmenstrual age, range 38-65 weeks postmenstrual age). Spectrograms were visually scored for episodes of EEG discontinuity or spindle activity. We characterized the relationship between EEG discontinuity or spindles and gestational age, postmenstrual age, or chronological age using logistic regression analyses. RESULTS: The predominant EEG patterns observed in infants under spinal anesthesia were slow oscillations, spindles, and EEG discontinuities. The presence of spindles, observed starting at about 49 weeks postmenstrual age, was best described by postmenstrual age ( P =.002) and was more likely with increasing postmenstrual age. The presence of EEG discontinuities, best described by gestational age ( P = .015), was more likely with decreasing gestational age. These age-related changes in the presence of spindles and EEG discontinuities in infants under spinal anesthesia generally corresponded to developmental changes in the sleep EEG. CONCLUSIONS: This work illustrates 2 separate key age-dependent transitions in EEG dynamics during infant spinal anesthesia that may reflect the maturation of underlying brain circuits: (1) diminishing discontinuities with increasing gestational age and (2) the appearance of spindles with increasing postmenstrual age. The similarity of these age-dependent transitions under spinal anesthesia with transitions in the developing brain during physiological sleep supports a sleep-related mechanism for the apparent sedation observed during infant spinal anesthesia.


Asunto(s)
Anestesia Raquidea , Humanos , Lactante , Sueño/fisiología , Electroencefalografía , Encéfalo/fisiología , Edad Gestacional
14.
Nat Commun ; 14(1): 1748, 2023 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-36991011

RESUMEN

Ketamine produces antidepressant effects in patients with treatment-resistant depression, but its usefulness is limited by its psychotropic side effects. Ketamine is thought to act via NMDA receptors and HCN1 channels to produce brain oscillations that are related to these effects. Using human intracranial recordings, we found that ketamine produces gamma oscillations in prefrontal cortex and hippocampus, structures previously implicated in ketamine's antidepressant effects, and a 3 Hz oscillation in posteromedial cortex, previously proposed as a mechanism for its dissociative effects. We analyzed oscillatory changes after subsequent propofol administration, whose GABAergic activity antagonizes ketamine's NMDA-mediated disinhibition, alongside a shared HCN1 inhibitory effect, to identify dynamics attributable to NMDA-mediated disinhibition versus HCN1 inhibition. Our results suggest that ketamine engages different neural circuits in distinct frequency-dependent patterns of activity to produce its antidepressant and dissociative sensory effects. These insights may help guide the development of brain dynamic biomarkers and novel therapeutics for depression.


Asunto(s)
Ketamina , Propofol , Humanos , Ketamina/farmacología , Ketamina/uso terapéutico , Propofol/farmacología , N-Metilaspartato , Neurofisiología , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Corteza Cerebral/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo
15.
Proc Natl Acad Sci U S A ; 120(11): e2207831120, 2023 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-36897972

RESUMEN

During propofol-induced general anesthesia, alpha rhythms measured using electroencephalography undergo a striking shift from posterior to anterior, termed anteriorization, where the ubiquitous waking alpha is lost and a frontal alpha emerges. The functional significance of alpha anteriorization and the precise brain regions contributing to the phenomenon are a mystery. While posterior alpha is thought to be generated by thalamocortical circuits connecting nuclei of the sensory thalamus with their cortical partners, the thalamic origins of the propofol-induced alpha remain poorly understood. Here, we used human intracranial recordings to identify regions in sensory cortices where propofol attenuates a coherent alpha network, distinct from those in the frontal cortex where it amplifies coherent alpha and beta activities. We then performed diffusion tractography between these identified regions and individual thalamic nuclei to show that the opposing dynamics of anteriorization occur within two distinct thalamocortical networks. We found that propofol disrupted a posterior alpha network structurally connected with nuclei in the sensory and sensory associational regions of the thalamus. At the same time, propofol induced a coherent alpha oscillation within prefrontal cortical areas that were connected with thalamic nuclei involved in cognition, such as the mediodorsal nucleus. The cortical and thalamic anatomy involved, as well as their known functional roles, suggests multiple means by which propofol dismantles sensory and cognitive processes to achieve loss of consciousness.


Asunto(s)
Propofol , Humanos , Propofol/farmacología , Estado de Conciencia , Electroencefalografía , Encéfalo , Tálamo , Inconsciencia/inducido químicamente , Vías Nerviosas , Corteza Cerebral
17.
PNAS Nexus ; 1(4): pgac158, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36329725

RESUMEN

Opioid drugs influence multiple brain circuits in parallel to produce analgesia as well as side effects, including respiratory depression. At present, we do not have real-time clinical biomarkers of these brain effects. Here, we describe the results of an experiment to characterize the electroencephalographic signatures of fentanyl in humans. We find that increasing concentrations of fentanyl induce a frontal theta band (4 to 8 Hz) signature distinct from slow-delta oscillations related to sleep and sedation. We also report that respiratory depression, quantified by decline in an index of instantaneous minute ventilation, occurs at ≈1700-fold lower concentrations than those that produce sedation as measured by reaction time. The electroencephalogram biomarker we describe could facilitate real-time monitoring of opioid drug effects and enable more precise and personalized opioid administration.

18.
Sci Rep ; 12(1): 15940, 2022 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-36153353

RESUMEN

Phase amplitude coupling (PAC) is thought to play a fundamental role in the dynamic coordination of brain circuits and systems. There are however growing concerns that existing methods for PAC analysis are prone to error and misinterpretation. Improper frequency band selection can render true PAC undetectable, while non-linearities or abrupt changes in the signal can produce spurious PAC. Current methods require large amounts of data and lack formal statistical inference tools. We describe here a novel approach for PAC analysis that substantially addresses these problems. We use a state space model to estimate the component oscillations, avoiding problems with frequency band selection, nonlinearities, and sharp signal transitions. We represent cross-frequency coupling in parametric and time-varying forms to further improve statistical efficiency and estimate the posterior distribution of the coupling parameters to derive their credible intervals. We demonstrate the method using simulated data, rat local field potentials (LFP) data, and human EEG data.


Asunto(s)
Encéfalo , Animales , Encéfalo/fisiología , Electroencefalografía , Humanos , Ratas
19.
J Clin Anesth ; 81: 110913, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35772250

RESUMEN

STUDY OBJECTIVES: Intra-operative electroencephalographic (EEG) monitoring utilizing the spectrogram allows visualization of children's brain response during anesthesia and may complement routine cardiorespiratory monitoring to facilitate titration of anesthetic doses. We aimed to determine if EEG-guided anesthesia will result in lower sevoflurane requirements, lower incidence of burst suppression and improved emergence characteristics in children undergoing routine general anesthesia, compared to standard care. DESIGN: Randomized controlled trial. SETTING: Tertiary pediatric hospital. PATIENTS: 200 children aged 1 to 6 years, ASA 1 or 2, undergoing routine sevoflurane anesthesia for minor surgery lasting 30 to 240 min. INTERVENTIONS: Children were randomized to either EEG-guided anesthesia (EEG-G) or standard care (SC). EEG-G group had sevoflurane titrated to maintain continuous slow/delta oscillations on the raw EEG and spectrogram, aiming to avoid burst suppression and, as far as possible, maintain a patient state index (PSI) between 25 and50. SC group received standard anesthesia care and the anesthesia teams were blinded to EEG waveforms. MEASUREMENTS: The primary outcomes were the average end-tidal sevoflurane concentration during induction and maintenance of anesthesia. Secondary outcomes include incidence and duration of intra-operative burst suppression and Pediatric Anesthesia Emergence Delirium (PAED) scores. RESULTS: The EEG-G group received lower end-tidal sevoflurane concentrations during induction [4.80% vs 5.67%, -0.88% (-1.45, -0.31) p = 0.003] and maintenance of anesthesia [2.23% vs 2.38%, -0.15% (-0.25, -0.05) p = 0.005], and had a lower incidence of burst suppression [3.1% vs 10.9%, p = 0.044] compared to the SC group. PAED scores were similar between groups. Children <2 years old required higher average end-tidal sevoflurane concentrations, regardless of group. CONCLUSIONS: EEG-guided anesthesia care reduces sevoflurane requirements in children undergoing general anesthesia, possibly lowering the incidence of burst suppression, without altering emergence characteristics. EEG monitoring allows direct visualization of brain responses in real time and allows clearer appreciation of varying sevoflurane requirements in children of different ages.


Asunto(s)
Anestésicos por Inhalación , Delirio del Despertar , Éteres Metílicos , Periodo de Recuperación de la Anestesia , Anestesia General , Anestésicos por Inhalación/efectos adversos , Niño , Preescolar , Electroencefalografía , Delirio del Despertar/epidemiología , Delirio del Despertar/prevención & control , Humanos , Estudios Prospectivos , Sevoflurano
20.
Anesth Analg ; 135(6): 1207-1216, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-35041633

RESUMEN

BACKGROUND: Electroencephalogram (EEG) discontinuity can occur at high concentrations of anesthetic drugs, reflecting suppression of electrocortical activity. This EEG pattern has been reported in children and reflects a deep state of anesthesia. Isoelectric events on the EEG, a more extreme degree of voltage suppression, have been shown to be associated with worse long-term neurologic outcomes in neonates undergoing cardiac surgery. However, the clinical significance of EEG discontinuities during pediatric anesthesia for noncardiac surgery is not yet known and merits further research. In this study, we assessed the incidence of EEG discontinuity during anesthesia induction in neurologically normal infants and the clinical factors associated with its development. We hypothesized that EEG discontinuity would be associated with sevoflurane-induced alpha (8-12 Hz) power during the period of anesthesia induction in infants. METHODS: We prospectively recorded 26 channels of EEG during anesthesia induction in an observational cohort of 54 infants (median age, 7.6 months; interquartile range [IQR] [4.9-9.8 months]). We identified EEG discontinuity, defined as voltage amplitude <25 microvolts for >2 seconds, and assessed its association with sevoflurane-induced alpha power using spectral analysis and multivariable logistic regression adjusting for clinically important variables. RESULTS: EEG discontinuity was observed in 20 of 54 subjects (37%), with a total of 25 discrete events. Sevoflurane-induced alpha power in the posterior regions of the head (eg, parietal or occipital regions) was significantly lower in the EEG discontinuity group (midline parietal channel on the electroencephalogram, International 10-20 System [Pz]; 8.3 vs 11.2 decibels [dBs]; P = .004), and this association remained after multivariable adjustment (adjusted odds ratio [aOR] = 0.51 per dB increase in alpha power [95% CI, 0.30-0.89]; P = .02). There were no differences in the baseline (unanesthetized) EEG between groups in alpha power or power in any other frequency band. CONCLUSIONS: We demonstrate that EEG discontinuity is common during anesthesia induction and is related to the level of sevoflurane-induced posterior alpha power, a putative marker of cortical-thalamic circuit development in the first year of life. This association persisted even after adjusting for age and propofol coadministration. The fact that this difference was only observed during anesthesia and not in the baseline EEG suggests that otherwise hidden brain circuit properties are unmasked by general anesthesia. These neurophysiologic markers observed during anesthesia may be useful in identifying patients who may have a greater chance of developing discontinuity.


Asunto(s)
Anestésicos , Propofol , Lactante , Recién Nacido , Niño , Humanos , Sevoflurano/efectos adversos , Electroencefalografía , Anestesia General/efectos adversos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...