Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
Res Sq ; 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38343806

RESUMEN

Adenosine A2A receptors (A2AAR) evoke pleiotropic intracellular signaling events via activation of the stimulatory heterotrimeric G protein, Gs. Here, we used cryoEM to solve the agonist-bound structure of A2AAR in a complex with full-length Gs α and Gß4γ2 (A2AAR-Gs α:ß4γ2). The orthosteric binding site of A2AAR-Gs α:ß4γ2 was similar to other structures of agonist-bound A2AAR, with or without Gs. Unexpectedly, the solvent accessible surface area within the interior of the complex was substantially larger for the complex with Gß4 versus the closest analog, A2AAR-miniGs α:ß1γ2. Consequently, there are fewer interactions between the switch II in Gs α and the Gß4 torus. In reconstitution experiments Gß4γ2 displayed a ten-fold higher efficiency over Gß1γ2 in catalyzing A2AAR dependent GTPγS binding to Gs α. We propose that the less constrained switch II in A2AAR-Gs α:ß4γ2 accounts for this increased efficiency. These results suggest that Gß4 functions as a positive allosteric enhancer versus Gß1.

2.
Alzheimers Dement ; 20(3): 1656-1670, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38069673

RESUMEN

INTRODUCTION: Neuronal nuclei are normally smoothly surfaced. In Alzheimer's disease (AD) and other tauopathies, though, they often develop invaginations. We investigated mechanisms and functional consequences of neuronal nuclear invagination in tauopathies. METHODS: Nuclear invagination was assayed by immunofluorescence in the brain, and in cultured neurons before and after extracellular tau oligomer (xcTauO) exposure. Nucleocytoplasmic transport was assayed in cultured neurons. Gene expression was investigated using nanoString nCounter technology and quantitative reverse transcription polymerase chain reaction. RESULTS: Invaginated nuclei were twice as abundant in human AD as in cognitively normal adults, and were increased in mouse neurodegeneration models. In cultured neurons, nuclear invagination was induced by xcTauOs by an intracellular tau-dependent mechanism. xcTauOs impaired nucleocytoplasmic transport, increased histone H3 trimethylation at lysine 9, and altered gene expression, especially by increasing tau mRNA. DISCUSSION: xcTauOs may be a primary cause of nuclear invagination in vivo, and by extension, impair nucleocytoplasmic transport and induce pathogenic gene expression changes. HIGHLIGHTS: Extracellular tau oligomers (xcTauOs) cause neuronal nuclei to invaginate. xcTauOs alter nucleocytoplasmic transport, chromatin structure, and gene expression. The most upregulated gene is MAPT, which encodes tau. xcTauOs may thus drive a positive feedback loop for production of toxic tau.


Asunto(s)
Enfermedad de Alzheimer , Tauopatías , Animales , Ratones , Adulto , Humanos , Proteínas tau/genética , Proteínas tau/metabolismo , Enfermedad de Alzheimer/patología , Tauopatías/patología , Neuronas/metabolismo , ARN Mensajero/metabolismo
3.
Microsc Microanal ; 29(Supplement_1): 951, 2023 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-37613658
4.
Life (Basel) ; 13(7)2023 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-37511902

RESUMEN

The hepatitis B virus (HBV) and hepatitis D virus (HDV) infections cause liver disease, including hepatitis, cirrhosis, and hepatocellular carcinoma (HCC). HBV infection remains a major global health problem. In 2019, 296 million people were living with chronic hepatitis B and about 5% of them were co-infected with HDV. In vitro cell culture systems are instrumental in the development of therapeutic targets. Cell culture systems contribute to identifying molecular mechanisms for HBV and HDV propagation, finding drug targets for antiviral therapies, and testing antiviral agents. Current HBV therapeutics, such as nucleoside analogs, effectively suppress viral replication but are not curative. Additionally, no effective treatment for HDV infection is currently available. Therefore, there is an urgent need to develop therapies to treat both viral infections. A robust in vitro cell culture system supporting HBV and HDV infections (HBV/HDV) is a critical prerequisite to studying HBV/HDV pathogenesis, the complete life cycle of HBV/HDV infections, and consequently identifying new therapeutics. However, the lack of an efficient cell culture system hampers the development of novel antiviral strategies for HBV/HDV infections. In vitro cell culture models have evolved with significant improvements over several decades. Recently, the development of the HepG2-NTCP sec+ cell line, expressing the sodium taurocholate co-transporting polypeptide receptor (NTCP) and self-assembling co-cultured primary human hepatocytes (SACC-PHHs) has opened new perspectives for a better understanding of HBV and HDV lifecycles and the development of specific antiviral drug targets against HBV/HDV infections. We address various cell culture systems along with different cell lines and how these cell culture systems can be used to provide better tools for HBV and HDV studies.

5.
Nat Commun ; 14(1): 4368, 2023 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-37474505

RESUMEN

The host proteins SERINC3 and SERINC5 are HIV-1 restriction factors that reduce infectivity when incorporated into the viral envelope. The HIV-1 accessory protein Nef abrogates incorporation of SERINCs via binding to intracellular loop 4 (ICL4). Here, we determine cryoEM maps of full-length human SERINC3 and an ICL4 deletion construct, which reveal that hSERINC3 is comprised of two α-helical bundles connected by a ~ 40-residue, highly tilted, "crossmember" helix. The design resembles non-ATP-dependent lipid transporters. Consistently, purified hSERINCs reconstituted into proteoliposomes induce flipping of phosphatidylserine (PS), phosphatidylethanolamine and phosphatidylcholine. Furthermore, SERINC3, SERINC5 and the scramblase TMEM16F expose PS on the surface of HIV-1 and reduce infectivity, with similar results in MLV. SERINC effects in HIV-1 and MLV are counteracted by Nef and GlycoGag, respectively. Our results demonstrate that SERINCs are membrane transporters that flip lipids, resulting in a loss of membrane asymmetry that is strongly correlated with changes in Env conformation and loss of infectivity.


Asunto(s)
Infecciones por VIH , VIH-1 , Humanos , Proteínas de la Membrana/metabolismo , VIH-1/metabolismo , Factores de Restricción Antivirales , Glicoproteínas de Membrana , Antivirales
6.
Chemistry ; 29(61): e202301547, 2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-37377132

RESUMEN

Singlet fission is a phenomenon that could significantly improve the efficiency of photovoltaic devices. Indolonaphthyridine thiophene (INDT) is a photostable singlet fission material that could potentially be utilised in singlet fission-based photovoltaic devices. This study investigates the intramolecular singlet fission (i-SF) mechanism of INDT dimers linked via para-phenyl, meta-phenyl and fluorene bridging groups. Using ultra-fast spectroscopy the highest rate of singlet fission is found in the para-phenyl linked dimer. Quantum calculations show the para-phenyl linker encourages enhanced monomer electronic coupling. Increased rates of singlet fission were also observed in the higher polarity o-dichlorobenzene, relative to toluene, indicating that charge-transfer states have a role in mediating the process. The mechanistic picture of polarisable singlet fission materials, such as INDT, extends beyond the traditional mechanistic landscape.

7.
J Am Chem Soc ; 145(19): 10712-10720, 2023 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-37133417

RESUMEN

Singlet fission is a photophysical process that provides a pathway for more efficient harvesting of solar energy in photovoltaic devices. The design of singlet fission candidates is non-trivial and requires careful optimization of two key criteria: (1) correct energetic alignment and (2) appropriate intermolecular coupling. Meanwhile, this optimization must not come at the cost of molecular stability or feasibility for device applications. Cibalackrot is a historic and stable organic dye which, although it has been suggested to have ideal energetics, does not undergo singlet fission due to large interchromophore distances, as suggested by single crystal analysis. Thus, while the energetic alignment is satisfactory, the molecule does not have the desired intermolecular coupling. Herein, we improve this characteristic through molecular engineering with the first synthesis of an aza-cibalackrot and show, using ultrafast transient spectroscopy, that singlet fission is successfully "turned on."

8.
Vaccine ; 41(24): 3663-3672, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37179166

RESUMEN

Vaccination against hepatitis B using a dissolving microneedle patch (dMNP) could increase access to the birth dose by reducing expertise needed for vaccine administration, refrigerated storage, and safe disposal of biohazardous sharps waste. In this study, we developed a dMNP to administer hepatitis B surface antigen (HBsAg) adjuvant-free monovalent vaccine (AFV) at doses of 5 µg, 10 µg, and 20 µg, and compared its immunogenicity to vaccination with 10 µg of standard monovalent HBsAg delivered by intramuscular (IM) injection either in an AFV format or as aluminum-adjuvanted vaccine (AAV). Vaccination was performed on a three dose schedule of 0, 3, and 9 weeks in mice and 0, 4, and 24 weeks in rhesus macaques. Vaccination by dMNP induced protective levels of anti-HBs antibody responses (≥10 mIU/ml) in mice and rhesus macaques at all three HBsAg doses studied. HBsAg delivered by dMNP induced higher anti-HBsAg antibody (anti-HBs) responses than the 10 µg IM AFV, but lower responses than 10 µg IM AAV, in mice and rhesus macaques. HBsAg-specific CD4+ and CD8+ T cell responses were detected in all vaccine groups. Furthermore, we analyzed differential gene expression profiles related to each vaccine delivery group and found that tissue stress, T cell receptor signaling, and NFκB signaling pathways were activated in all groups. These results suggest that HBsAg delivered by dMNP, IM AFV, and IM AAV have similar signaling pathways to induce innate and adaptive immune responses. We further demonstrated that dMNP was stable at room temperature (20 °C-25 °C) for 6 months, maintaining 67 ± 6 % HBsAg potency. This study provides evidence that delivery of 10 µg (birth dose) AFV by dMNP induced protective levels of antibody responses in mice and rhesus macaques. The dMNPs developed in this study could be used to improve hepatitis B birth dose vaccination coverage levels in resource limited regions to achieve and maintain hepatitis B elimination.


Asunto(s)
Vacunas contra Hepatitis B , Hepatitis B , Animales , Ratones , Macaca mulatta , Antígenos de Superficie de la Hepatitis B , Vacunación/métodos , Anticuerpos contra la Hepatitis B , Hepatitis B/prevención & control , Adyuvantes Inmunológicos
9.
Nat Commun ; 14(1): 1095, 2023 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-36841832

RESUMEN

Our understanding of protein synthesis has been conceptualised around the structure and function of the bacterial ribosome. This complex macromolecular machine is the target of important antimicrobial drugs, an integral line of defence against infectious diseases. Here, we describe how open access to cryo-electron microscopy facilities combined with bespoke user support enabled structural determination of the translating ribosome from Escherichia coli at 1.55 Å resolution. The obtained structures allow for direct determination of the rRNA sequence to identify ribosome polymorphism sites in the E. coli strain used in this study and enable interpretation of the ribosomal active and peripheral sites at unprecedented resolution. This includes scarcely populated chimeric hybrid states of the ribosome engaged in several tRNA translocation steps resolved at ~2 Å resolution. The current map not only improves our understanding of protein synthesis but also allows for more precise structure-based drug design of antibiotics to tackle rising bacterial resistance.


Asunto(s)
Escherichia coli , Ribosomas , Microscopía por Crioelectrón/métodos , Escherichia coli/genética , Modelos Moleculares , Ribosomas/metabolismo , ARN Ribosómico/metabolismo , Bacterias/genética
10.
J Gen Virol ; 103(9)2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36170152

RESUMEN

The family Hepeviridae includes enterically transmitted small quasi-enveloped or non-enveloped positive-sense single-stranded RNA viruses infecting mammals and birds (subfamily Orthohepevirinae) or fish (Parahepevirinae). Hepatitis E virus (genus Paslahepevirus) is responsible for self-limiting acute hepatitis in humans; the infection may become chronic in immunocompromised individuals and extrahepatic manifestations have been described. Avian hepatitis E virus (genus Avihepevirus) causes hepatitis-splenomegaly syndrome in chickens. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Hepeviridae, which is available at www.ictv.global/report/hepeviridae.


Asunto(s)
Hepevirus , Virus ARN , Animales , Pollos , Peces , Genoma Viral , Hepevirus/genética , Humanos , Mamíferos , Virus ARN/genética , Virión , Replicación Viral
11.
Sci Rep ; 12(1): 4382, 2022 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-35288624

RESUMEN

B1 cell-derived natural antibodies are non-specific polyreactive antibodies and can activate the complement pathway leading to lysis of enveloped virus particles before activation of the adaptive immune response. We investigated the relationship between natural antibody levels and treatment outcomes of 126 treatment-naïve chronic hepatitis B (CHB) patients, who underwent entecavir (ETV) treatment. Serum IgG1-3 and complement C3 levels were significantly higher in HBeAg-positive patients. In pre-treatment, IgG1 (odd ratios [OR] 2.3, p < 0.0001), IgG2 (OR 9.8, p < 0.0001), IgG3 (OR 7.4, p < 0.0001), and C3 (OR 7.2, p < 0.0001) were associated with HBeAg-positive patients. At baseline, IgG2 (OR 10.2, p = 0.025), IgG4, (OR 3.4, p = 0.026), and complement C1q (OR 5.0, p = 0.0068) were associated with seroconverters. Post-treatment levels of IgG1-4 and C3/C1q were also associated with HBeAg-positive patients and seroconverters. High levels of IgG2-4 and C1q were observed in seroconverters but not in virological responders. Thus, high pretreatment and post-treatment levels of natural antibody IgG1-4, complement C3, and/or C1q were significantly associated with HBeAg-positivity and HBeAg seroconverters in CHB patients with ETV treatment. These results suggest that the presence of preexisting host immunity against chronic hepatitis B is closely related to outcome of ETV treatment.


Asunto(s)
Antígenos e de la Hepatitis B , Hepatitis B Crónica , Antivirales/uso terapéutico , Complemento C1q , Complemento C3 , ADN Viral , Guanina/análogos & derivados , Virus de la Hepatitis B/genética , Humanos , Inmunoglobulina G/uso terapéutico , Seroconversión , Resultado del Tratamiento
12.
J Gen Virol ; 102(11)2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34723786

RESUMEN

Hepatitis B virus (HBV) infection is a global public health problem with about 257 million chronically infected people and over 887000 deaths annually. In this study, 32 whole HBV genomes of various genotypes were amplified from clinical isolates to create transfection clones. The clones were sequenced, and their biological properties characterized by transfecting linear HBV clones into HepG2 cells. We analysed the SPI and SPII promotor regions, X-gene, BCP/PC sequences, core, preS/S and HBV polymerase sequences. HBV clones analysed in this study revealed differential replication kinetics of viral nucleic acids and expression of proteins. Sequence analysis of HBV clones revealed mutations in preS1, preS2 and S genes; deletion and insertion and point mutations in BCP/PC region; including novel and previously reported mutations. Among the patient samples tested, HBV genotype B clones were more likely to have higher frequencies of mutations, while sub-genotype A1 and A2 clones tended to have fewer mutations. No polymerase drug resistant mutations were seen. HBeAg mutations were primarily in the BCP/PC region in genotype B, but core truncations were found in genotype E. S gene mutations affecting HBsAg expression and detection were seen in all genotypes except A2. Using an HBV clone with repetitive terminal sequences and a SapI restriction site allowed us to analyse HBV analyte production in cell culture and characterize the genetics of viral phenotypes using complete HBV genomes isolated from serum/plasma samples of infected patients.


Asunto(s)
Genoma Viral , Virus de la Hepatitis B/genética , Hepatitis B/virología , ADN Viral/genética , Variación Genética , Genotipo , Virus de la Hepatitis B/aislamiento & purificación , Humanos , Mutación , Filogenia , Transfección
13.
J Am Chem Soc ; 143(45): 19137-19148, 2021 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-34739240

RESUMEN

The assembly and maturation of human immunodeficiency virus type 1 (HIV-1) require proteolytic cleavage of the Gag polyprotein. The rate-limiting step resides at the junction between the capsid protein CA and spacer peptide 1, which assembles as a six-helix bundle (6HB). Bevirimat (BVM), the first-in-class maturation inhibitor drug, targets the 6HB and impedes proteolytic cleavage, yet the molecular mechanisms of its activity, and relatedly, the escape mechanisms of mutant viruses, remain unclear. Here, we employed extensive molecular dynamics (MD) simulations and free energy calculations to quantitatively investigate molecular structure-activity relationships, comparing wild-type and mutant viruses in the presence and absence of BVM and inositol hexakisphosphate (IP6), an assembly cofactor. Our analysis shows that the efficacy of BVM is directly correlated with preservation of 6-fold symmetry in the 6HB, which exists as an ensemble of structural states. We identified two primary escape mechanisms, and both lead to loss of symmetry, thereby facilitating helix uncoiling to aid access of protease. Our findings also highlight specific interactions that can be targeted for improved inhibitor activity and support the use of MD simulations for future inhibitor design.


Asunto(s)
Fármacos Anti-VIH/metabolismo , VIH-1/química , Succinatos/metabolismo , Triterpenos/metabolismo , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/metabolismo , Simulación de Dinámica Molecular , Mutación , Ácido Fítico/metabolismo , Conformación Proteica en Hélice alfa/efectos de los fármacos , Desplegamiento Proteico/efectos de los fármacos , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/química , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/genética
14.
Structure ; 29(9): 1040-1047.e3, 2021 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-34129834

RESUMEN

To mediate cell-to-cell communication via gap junction channels (GJCs), connexins (Cx) traffic as hexameric hemichannels to the plasma membrane, which dock end-to-end between adjacent cell membranes, thereby forming a dodecameric intercellular conduit. Hemichannels also function independently to mediate the passage of contents between the cytoplasm and extracellular space. To generate hemichannels, the mutation N176Y was introduced into the second extracellular loop of Cx26. The electron cryomicroscopy structure of the hexameric hemichannel in lipid bilayer nanodiscs displays an open pore and a 4-helix bundle transmembrane design that is nearly identical to dodecameric GJCs. In contrast to the high resolution of the transmembrane α-helices, the extracellular loops are less well resolved. The conformational flexibility of the extracellular loops may be essential to facilitate surveillance of hemichannels in apposed cells to identify compatible Cx isoforms that enable intercellular docking. Our results also provide a structural foundation for previous electrophysiologic and permeation studies of Cx hemichannels.


Asunto(s)
Conexina 26/química , Humanos , Membrana Dobles de Lípidos/química , Simulación de Dinámica Molecular , Conformación Proteica en Hélice alfa
15.
PLoS One ; 15(9): e0237618, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32877413

RESUMEN

Hepatitis E virus (HEV) genotype 1 (gt1) and gt3 infections have distinct epidemiologic characteristics and genotype-specific molecular mechanisms of pathogenesis are not well characterized. Previously, we showed differences in immune response-related gene expression profiles of HEV gt1 and gt3 infections using qPCR. We hypothesize that HEV gt1 and gt3 infections induce transcriptome modifications contributing to disease pathogenesis. RNAseq analysis was performed using liver biopsy samples of naïve (baseline), HEV gt1, or gt3-infected rhesus macaques, and nine anti-HEV positive rhesus macaques re-inoculated with HEV gt1. All 10 primary HEV gt1/gt3 infected animals exhibited the typical course of acute viral hepatitis and cleared the infection between 27 to 67 days after inoculation. Viremic stages of HEV infection were defined as early, peak, and decline based on HEV RNA titers in daily stool specimens. During early, peak, and decline phases of infection, HEV gt1 induced 415, 417, and 1769 differentially expressed genes, respectively, and 310, 678, and 388 genes were differentially expressed by HEV gt3, respectively (fold change ≥ 2.0, p-value ≤ 0.05). In the HEV gt1 infection, genes related to metabolic pathways were differentially expressed during the three phases of infection. In contrast, oxidative reduction (early phase), immune responses (peak phase), and T cell cytokine production (decline phase) were found to be regulated during HEV gt3 infection. In addition, FoxO and MAPK signaling pathways were differentially regulated in re-infected and protected animals against HEV gt1 reinfection, respectively. Significant differences of hepatic gene regulation exist between HEV gt1 and gt3 infections. These findings reveal a new link between molecular pathogenesis and epidemiological characteristics seen in HEV gt1 and gt3 infections.


Asunto(s)
Perfilación de la Expresión Génica , Virus de la Hepatitis E/genética , Hepatitis E/veterinaria , Macaca mulatta/virología , Animales , Biopsia , Ontología de Genes , Genotipo , Hígado/patología , Análisis de Secuencia de ARN
16.
J Viral Hepat ; 27(12): 1484-1494, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32810349

RESUMEN

The ongoing hepatitis A outbreaks in multiple states in the United States have concerned public health authorities since March 2017. The outbreaks have spread throughout 30 states and include primarily persons who use drugs, including persons who inject drugs (PWID) and persons experiencing homelessness. Contaminated drug injection paraphernalia and sharing of these items could potentially aid in transmission of hepatitis A virus (HAV) among these populations. We examined HAV survival on drug paraphernalia frequently shared among PWIDs. The effect of low pH on HAV survival using citric acid, which is frequently used by PWIDs during dose preparation, was investigated. We compared the plaque assay results with those concurrently obtained by qRT-PCR to establish whether HAV RNA levels could be used as surrogates for plaque assay results. HAV suspended in minimal essential media at room temperature infected FRhK4 cells for more than 17 weeks. HAV remained viable in syringes/needles for up to 10 weeks depending on the gauge of the needles and the syringe dead volumes, and on cookers, tourniquets and cotton balls/filter surfaces for up to 4 weeks. HAV retained its infectivity for more than 10 weeks at pH as low as 2. In conclusion, our findings show that HAV survives and remains infective in or on injection drug use equipment for 1 to 10 weeks depending on the type of paraphernalia examined and environmental conditions. These findings suggest that contaminated drug paraphernalia can potentially facilitate the transmission of HAV within populations who share these items.


Asunto(s)
Consumidores de Drogas , Virus de la Hepatitis A , Hepatitis A , Preparaciones Farmacéuticas , Abuso de Sustancias por Vía Intravenosa , Humanos , Jeringas , Estados Unidos
17.
J Gen Virol ; 101(7): 692-698, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32469300

RESUMEN

In this recommendation, we update our 2016 table of reference sequences of subtypes of hepatitis E virus (HEV; species Orthohepevirus A, family Hepeviridae) for which complete genome sequences are available (Smith et al., 2016). This takes into account subsequent publications describing novel viruses and additional proposals for subtype names; there are now eight genotypes and 36 subtypes. Although it remains difficult to define strict criteria for distinguishing between virus subtypes, and is not within the remit of the International Committee on Taxonomy of Viruses (ICTV), the use of agreed reference sequences will bring clarity and stability to researchers, epidemiologists and clinicians working with HEV.


Asunto(s)
Virus de la Hepatitis E/clasificación , Virus de la Hepatitis E/genética , Animales , Secuencia de Bases , Bases de Datos de Ácidos Nucleicos , Genotipo , Hepatitis E/virología , Virus de la Hepatitis E/aislamiento & purificación , Humanos , Filogenia , ARN Viral/genética , Especificidad de la Especie
18.
Cell Rep ; 31(3): 107482, 2020 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-32320665

RESUMEN

Gap junction channels (GJCs) mediate intercellular communication and are gated by numerous conditions such as pH. The electron cryomicroscopy (cryo-EM) structure of Cx26 GJC at physiological pH recapitulates previous GJC structures in lipid bilayers. At pH 6.4, we identify two conformational states, one resembling the open physiological-pH structure and a closed conformation that displays six threads of density, that join to form a pore-occluding density. Crosslinking and hydrogen-deuterium exchange mass spectrometry reveal closer association between the N-terminal (NT) domains and the cytoplasmic loops (CL) at acidic pH. Previous electrophysiologic studies suggest an association between NT residue N14 and H100 near M2, which may trigger the observed movement of M2 toward M1 in our cryo-EM maps, thereby accounting for additional NT-CL crosslinks at acidic pH. We propose that these pH-induced interactions and conformational changes result in extension, ordering, and association of the acetylated NT domains to form a hexameric "ball-and-chain" gating particle.


Asunto(s)
Uniones Comunicantes/metabolismo , Concentración de Iones de Hidrógeno , Espectrometría de Masas/métodos , Humanos
19.
Nat Commun ; 11(1): 1598, 2020 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-32221310

RESUMEN

We propose the concept of universal fiducials based on a set of pre-made semi-synthetic antibodies (sABs) generated by customized phage display selections against the fusion protein BRIL, an engineered variant of apocytochrome b562a. These sABs can bind to BRIL fused either into the loops or termini of different GPCRs, ion channels, receptors and transporters without disrupting their structure. A crystal structure of BRIL in complex with an affinity-matured sAB (BAG2) that bound to all systems tested delineates the footprint of interaction. Negative stain and cryoEM data of several examples of BRIL-membrane protein chimera highlight the effectiveness of the sABs as universal fiducial marks. Taken together with a cryoEM structure of sAB bound human nicotinic acetylcholine receptor, this work demonstrates that these anti-BRIL sABs can greatly enhance the particle properties leading to improved cryoEM outcomes, especially for challenging membrane proteins.


Asunto(s)
Anticuerpos/farmacología , Microscopía por Crioelectrón/métodos , Proteínas de la Membrana/química , Anticuerpos/química , Membrana Celular/metabolismo , Técnicas de Visualización de Superficie Celular , Cristalografía por Rayos X , Humanos , Proteínas de la Membrana/efectos de los fármacos , Proteínas de la Membrana/metabolismo , Modelos Moleculares , Polímeros , Propilaminas , Unión Proteica , Conformación Proteica
20.
J Biol Chem ; 295(2): 435-443, 2020 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-31767681

RESUMEN

Many members of the AAA+ ATPase family function as hexamers that unfold their protein substrates. These AAA unfoldases include spastin, which plays a critical role in the architecture of eukaryotic cells by driving the remodeling and severing of microtubules, which are cytoskeletal polymers of tubulin subunits. Here, we demonstrate that a human spastin binds weakly to unmodified peptides from the C-terminal segment of human tubulin α1A/B. A peptide comprising alternating glutamate and tyrosine residues binds more tightly, which is consistent with the known importance of glutamylation for spastin microtubule severing activity. A cryo-EM structure of the spastin-peptide complex at 4.2 Å resolution revealed an asymmetric hexamer in which five spastin subunits adopt a helical, spiral staircase configuration that binds the peptide within the central pore, whereas the sixth subunit of the hexamer is displaced from the peptide/substrate, as if transitioning from one end of the helix to the other. This configuration differs from a recently published structure of spastin from Drosophila melanogaster, which forms a six-subunit spiral without a transitioning subunit. Our structure resembles other recently reported AAA unfoldases, including the meiotic clade relative Vps4, and supports a model in which spastin utilizes a hand-over-hand mechanism of tubulin translocation and microtubule remodeling.


Asunto(s)
Espastina/metabolismo , Tubulina (Proteína)/metabolismo , Sitios de Unión , Ácido Glutámico/química , Ácido Glutámico/metabolismo , Humanos , Modelos Moleculares , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , Unión Proteica , Conformación Proteica , Multimerización de Proteína , Espastina/química , Tubulina (Proteína)/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...