Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Synaptic Neurosci ; 14: 1004154, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36186623

RESUMEN

A-kinase anchoring protein 79-human/150-rodent (AKAP79/150) organizes signaling proteins to control synaptic plasticity. AKAP79/150 associates with the plasma membrane and endosomes through its N-terminal domain that contains three polybasic regions and two Cys residues that are reversibly palmitoylated. Mutations abolishing palmitoylation (AKAP79/150 CS) reduce its endosomal localization and association with the postsynaptic density (PSD). Here we combined advanced light and electron microscopy (EM) to characterize the effects of AKAP79/150 palmitoylation on its postsynaptic nanoscale organization, trafficking, and mobility in hippocampal neurons. Immunogold EM revealed prominent extrasynaptic membrane AKAP150 labeling with less labeling at the PSD. The label was at greater distances from the spine membrane for AKAP150 CS than WT in the PSD but not in extra-synaptic locations. Immunogold EM of GFP-tagged AKAP79 WT showed that AKAP79 adopts a vertical, extended conformation at the PSD with its N-terminus at the membrane, in contrast to extrasynaptic locations where it adopts a compact or open configurations of its N- and C-termini with parallel orientation to the membrane. In contrast, GFP-tagged AKAP79 CS was displaced from the PSD coincident with disruption of its vertical orientation, while proximity and orientation with respect to the extra-synaptic membrane was less impacted. Single-molecule localization microscopy (SMLM) revealed a heterogeneous distribution of AKAP150 with distinct high-density, nano-scale regions (HDRs) overlapping the PSD but more prominently located in the extrasynaptic membrane for WT and the CS mutant. Thick section scanning transmission electron microscopy (STEM) tomography revealed AKAP150 immunogold clusters similar in size to HDRs seen by SMLM and more AKAP150 labeled endosomes in spines for WT than for CS, consistent with the requirement for AKAP palmitoylation in endosomal trafficking. Hidden Markov modeling of single molecule tracking data revealed a bound/immobile fraction and two mobile fractions for AKAP79 in spines, with the CS mutant having shorter dwell times and faster transition rates between states than WT, suggesting that palmitoylation stabilizes individual AKAP molecules in various spine subpopulations. These data demonstrate that palmitoylation fine tunes the nanoscale localization, mobility, and trafficking of AKAP79/150 in dendritic spines, which might have profound effects on its regulation of synaptic plasticity.

2.
J Neurosci ; 41(46): 9633-9649, 2021 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-34580165

RESUMEN

Epilepsy Aphasia Syndromes (EAS) are a spectrum of childhood epileptic, cognitive, and language disorders of unknown etiology. CNKSR2 is a strong X-linked candidate gene implicated in EAS; however, there have been no studies of genetic models to dissect how its absence may lead to EAS. Here we develop a novel Cnksr2 KO mouse line and show that male mice exhibit increased neural activity and have spontaneous electrographic seizures. Cnksr2 KO mice also display significantly increased anxiety, impaired learning and memory, and a progressive and dramatic loss of ultrasonic vocalizations. We find that Cnksr2 is expressed in cortical, striatal, and cerebellar regions and is localized at both excitatory and inhibitory postsynapses. Proteomics analysis reveals Cnksr2 anchors key binding partners at synapses, and its loss results in significant alterations of the synaptic proteome, including proteins implicated in epilepsy disorders. Our results validate that loss of CNKSR2 leads to EAS and highlights the roles of Cnksr2 in synaptic organization and neuronal network activity.SIGNIFICANCE STATEMENT Epilepsy Aphasia Syndromes (EAS) are at the severe end of a spectrum of cognitive-behavioral symptoms seen in childhood epilepsies, and they remain an inadequately understood disorder. The prognosis of EAS is frequently poor, and patients have life-long language and cognitive disturbances. Here we describe a genetic mouse model of EAS, based on the KO of the EAS risk gene Cnksr2 We show that these mice exhibit electrophysiological and behavioral phenotypes similar to those of patients, providing an important new model for future studies of EAS. We also provide insights into the molecular disturbances downstream of Cnksr2 loss by using in vivo quantitative proteomics tools.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/deficiencia , Modelos Animales de Enfermedad , Síndrome de Landau-Kleffner , Proteínas del Tejido Nervioso/deficiencia , Animales , Conducta Animal , Ratones , Ratones Noqueados , Fenotipo , Síndrome
3.
Nature ; 588(7837): 296-302, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33177716

RESUMEN

Perisynaptic astrocytic processes are an integral part of central nervous system synapses1,2; however, the molecular mechanisms that govern astrocyte-synapse adhesions and how astrocyte contacts control synapse formation and function are largely unknown. Here we use an in vivo chemico-genetic approach that applies a cell-surface fragment complementation strategy, Split-TurboID, and identify a proteome that is enriched at astrocyte-neuron junctions in vivo, which includes neuronal cell adhesion molecule (NRCAM). We find that NRCAM is expressed in cortical astrocytes, localizes to perisynaptic contacts and is required to restrict neuropil infiltration by astrocytic processes. Furthermore, we show that astrocytic NRCAM interacts transcellularly with neuronal NRCAM coupled to gephyrin at inhibitory postsynapses. Depletion of astrocytic NRCAM reduces numbers of inhibitory synapses without altering glutamatergic synaptic density. Moreover, loss of astrocytic NRCAM markedly decreases inhibitory synaptic function, with minor effects on excitation. Thus, our results present a proteomic framework for how astrocytes interface with neurons and reveal how astrocytes control GABAergic synapse formation and function.


Asunto(s)
Astrocitos/química , Astrocitos/metabolismo , Neuronas/metabolismo , Proteoma/metabolismo , Proteómica , Sinapsis/química , Sinapsis/metabolismo , Animales , Astrocitos/citología , Moléculas de Adhesión Celular Neuronal/metabolismo , Forma de la Célula , Femenino , Neuronas GABAérgicas/citología , Neuronas GABAérgicas/metabolismo , Prueba de Complementación Genética , Células HEK293 , Humanos , Masculino , Ratones , Inhibición Neural , Neuronas/citología , Ácido gamma-Aminobutírico/metabolismo
4.
Cell Rep ; 31(12): 107785, 2020 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-32579917

RESUMEN

Molecular mechanisms underlying plasticity at brain inhibitory synapses remain poorly characterized. Increased postsynaptic clustering of GABAA receptors (GABAARs) rapidly strengthens inhibition during inhibitory long-term potentiation (iLTP). However, it is unclear how synaptic GABAAR clustering is maintained to sustain iLTP. Here, we identify a role for miR376c in regulating the translation of mRNAs encoding the synaptic α1 and γ2 GABAAR subunits, GABRA1 and GABRG2, respectively. Following iLTP induction, transcriptional repression of miR376c is induced through a calcineurin-NFAT-HDAC signaling pathway and promotes increased translation and clustering of synaptic GABAARs. This pathway is essential for the long-term expression of iLTP and is blocked by miR376c overexpression, specifically impairing inhibitory synaptic strength. Finally, we show that local de novo synthesis of synaptic GABAARs occurs exclusively in dendrites and in a miR376c-dependent manner following iLTP. Together, this work describes a local post-transcriptional mechanism that regulates inhibitory synaptic plasticity via miRNA control of dendritic protein synthesis.


Asunto(s)
Potenciación a Largo Plazo/genética , MicroARNs/genética , Biosíntesis de Proteínas/genética , Receptores de GABA-A/genética , Animales , Secuencia de Bases , Calcineurina/metabolismo , Dendritas/metabolismo , Regulación de la Expresión Génica , Silenciador del Gen , Células HEK293 , Humanos , MicroARNs/metabolismo , Factores de Transcripción NFATC/metabolismo , Inhibición Neural , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Receptores de GABA-A/metabolismo , Sinapsis/metabolismo , Transcripción Genética
5.
Artículo en Inglés | MEDLINE | ID: mdl-32292336

RESUMEN

Experience-dependent learning and memory require multiple forms of plasticity at hippocampal and cortical synapses that are regulated by N-methyl-D-aspartate receptors (NMDA) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type ionotropic glutamate receptors (NMDAR, AMPAR). These plasticity mechanisms include long-term potentiation (LTP) and depression (LTD), which are Hebbian input-specific mechanisms that rapidly increase or decrease AMPAR synaptic strength at specific inputs, and homeostatic plasticity that globally scales-up or -down AMPAR synaptic strength across many or even all inputs. Frequently, these changes in synaptic strength are also accompanied by a change in the subunit composition of AMPARs at the synapse due to the trafficking to and from the synapse of receptors lacking GluA2 subunits. These GluA2-lacking receptors are most often GluA1 homomeric receptors that exhibit higher single-channel conductance and are Ca2+-permeable (CP-AMPAR). This review article will focus on the role of protein phosphorylation in regulation of GluA1 CP-AMPAR recruitment and removal from hippocampal synapses during synaptic plasticity with an emphasis on the crucial role of local signaling by the cAMP-dependent protein kinase (PKA) and the Ca2+calmodulin-dependent protein phosphatase 2B/calcineurin (CaN) that is coordinated by the postsynaptic scaffold protein A-kinase anchoring protein 79/150 (AKAP79/150).

6.
Cell Rep ; 25(4): 974-987.e4, 2018 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-30355502

RESUMEN

Ca2+-permeable AMPA-type glutamate receptors (CP-AMPARs) containing GluA1 but lacking GluA2 subunits contribute to multiple forms of synaptic plasticity, including long-term potentiation (LTP), but mechanisms regulating CP-AMPARs are poorly understood. A-kinase anchoring protein (AKAP) 150 scaffolds kinases and phosphatases to regulate GluA1 phosphorylation and trafficking, and trafficking of AKAP150 itself is modulated by palmitoylation on two Cys residues. Here, we developed a palmitoylation-deficient knockin mouse to show that AKAP150 palmitoylation regulates CP-AMPAR incorporation at hippocampal synapses. Using biochemical, super-resolution imaging, and electrophysiological approaches, we found that palmitoylation promotes AKAP150 localization to recycling endosomes and the postsynaptic density (PSD) to limit CP-AMPAR basal synaptic incorporation. In addition, we found that AKAP150 palmitoylation is required for LTP induced by weaker stimulation that recruits CP-AMPARs to synapses but not stronger stimulation that recruits GluA2-containing AMPARs. Thus, AKAP150 palmitoylation controls its subcellular localization to maintain proper basal and activity-dependent regulation of synaptic AMPAR subunit composition.


Asunto(s)
Proteínas de Anclaje a la Quinasa A/metabolismo , Calcio/metabolismo , Permeabilidad de la Membrana Celular , Lipoilación , Potenciación a Largo Plazo , Receptores AMPA/metabolismo , Sinapsis/metabolismo , Animales , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Espinas Dendríticas/metabolismo , Endosomas/metabolismo , Ratones Endogámicos C57BL , Transmisión Sináptica
7.
J Biol Chem ; 290(22): 14107-19, 2015 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-25882844

RESUMEN

Anchoring proteins direct protein kinases and phosphoprotein phosphatases toward selected substrates to control the efficacy, context, and duration of neuronal phosphorylation events. The A-kinase anchoring protein AKAP79/150 interacts with protein kinase A (PKA), protein kinase C (PKC), and protein phosphatase 2B (calcineurin) to modulate second messenger signaling events. In a mass spectrometry-based screen for additional AKAP79/150 binding partners, we have identified the Roundabout axonal guidance receptor Robo2 and its ligands Slit2 and Slit3. Biochemical and cellular approaches confirm that a linear sequence located in the cytoplasmic tail of Robo2 (residues 991-1070) interfaces directly with sites on the anchoring protein. Parallel studies show that AKAP79/150 interacts with the Robo3 receptor in a similar manner. Immunofluorescent staining detects overlapping expression patterns for murine AKAP150, Robo2, and Robo3 in a variety of brain regions, including hippocampal region CA1 and the islands of Calleja. In vitro kinase assays, peptide spot array mapping, and proximity ligation assay staining approaches establish that human AKAP79-anchored PKC selectively phosphorylates the Robo3.1 receptor subtype on serine 1330. These findings imply that anchored PKC locally modulates the phosphorylation status of Robo3.1 in brain regions governing learning and memory and reward.


Asunto(s)
Proteínas de Anclaje a la Quinasa A/metabolismo , Proteína Quinasa C/metabolismo , Receptores Inmunológicos/metabolismo , Animales , Encéfalo/metabolismo , Citoplasma/metabolismo , Silenciador del Gen , Glutatión Transferasa/metabolismo , Células HEK293 , Hipocampo/metabolismo , Humanos , Ligandos , Sustancias Macromoleculares , Espectrometría de Masas , Proteínas de la Membrana/metabolismo , Ratones , Ratones Transgénicos , Microscopía Fluorescente , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Fosforilación , Mapeo de Interacción de Proteínas , Isoformas de Proteínas , ARN Interferente Pequeño/metabolismo , Receptores de Superficie Celular , Transducción de Señal
8.
Behav Genet ; 44(3): 270-81, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24213680

RESUMEN

Human facial attractiveness and facial sexual dimorphism (masculinity-femininity) are important facets of mate choice and are hypothesized to honestly advertise genetic quality. However, it is unclear whether genes influencing facial attractiveness and masculinity-femininity have similar, opposing, or independent effects across sex, and the heritability of these phenotypes is poorly characterized. To investigate these issues, we assessed facial attractiveness and facial masculinity-femininity in the largest genetically informative sample (n = 1,580 same- and opposite-sex twin pairs and siblings) to assess these questions to date. The heritability was ~0.50-0.70 for attractiveness and ~0.40-0.50 for facial masculinity-femininity, indicating that, despite ostensible selection on genes influencing these traits, substantial genetic variation persists in both. Importantly, we found evidence for intralocus sexual conflict, whereby alleles that increase masculinity in males have the same effect in females. Additionally, genetic influences on attractiveness were shared across the sexes, suggesting that attractive fathers tend to have attractive daughters and attractive mothers tend to have attractive sons.


Asunto(s)
Belleza , Modelos Genéticos , Caracteres Sexuales , Conducta de Elección , Cara , Femenino , Humanos , Masculino , Conducta Sexual
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...